Qualifying test

Solve any five problems; present a clear solution with all the relevant details and references

In what follows, m_p denotes the Lebesgue measure on \mathbb{R}^p .

Problem 1: Assume \mathfrak{A} is a σ -algebra, and $\mu: \mathfrak{A} \to [0, \infty]$ with $\mu(\emptyset) < \infty$. Assume further that μ is finitely additive, and for any sequence $\{A_n\}$ of sets from \mathfrak{A} we have

$$A_1 \subset A_2 \subset A_3 \subset \ldots \Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n).$$

Prove that μ is a measure.

Problem 2: Let (X, \mathfrak{A}, ν) be a measure space and f be a non-negative measurable function on X. For all measurable sets E define

$$\mu(E) = \int_{E} f d\nu.$$

Assume g is a summable function with respect to μ . Show that

$$\int_X g d\mu = \int_X f g d\nu$$

Problem 3: Let (X, \mathfrak{A}, ν) be a measure space and $\{f_n\}_{n=1}^{\infty}$ be a sequence of measurable functions. Assume that $f_n(x) \to f(x)$ for μ -a.e. $x \in X$, and that

$$\int\limits_X f^2 d\mu < \infty$$

Show that

$$\lim_{n \to \infty} \int_X f_n^2 d\mu = \int_X f^2 d\mu \quad \text{if and only if} \quad \lim_{n \to \infty} \int_X |f_n - f|^2 d\mu = 0$$

Problem 4: Compute

$$\sum_{n=1}^{\infty} \int_{[0,\pi/4]} (1 - \sqrt{\sin x})^n \cos(x) dm_1(x)$$

and justify your answer.

Problem 5: Assume f is a summable function on $(\mathbb{R}, \mathfrak{M}_1, m_1)$. For every $x \in [0, 1]$ define

$$g(x) = \int_{[x,1]} \frac{f(t)}{t} dm_1(t).$$

Show that g is summable on [0, 1] and show that

$$\int_{[0,1]} g dm_1 = \int_{[0,1]} f dm_1.$$

Problem 6: Let f be an m_1 -measurable function on [0, 1] with

$$\int_{[0,1]} |f|^5 dm_1 < \infty.$$

For $t \in [0, \infty)$ define

$$\lambda(t) = m_1 \left(x \colon |f(x)| \ge t \right).$$
$$\int_{[0,\infty]} \lambda(t) dm_1(t) < \infty.$$

Show that

Problem 7: Assume f is a non-decreasing continuous function on [0, 1], and for every $\varepsilon > 0$ we know that f is absolutely continuous on $[\epsilon, 1]$. Is it true that f is absolutely continuous on [0, 1]?