Qualifying test

Solve any five problems; present a clear solution with all the relevant details and references

In what follows, m_p denotes the Lebesgue measure on \mathbb{R}^p .

Problem 1: Let $E \subset \mathbb{R}$ be a Lebesgue measurable set, and for any interval I we have

$$m_1(E \cap I) \leqslant \frac{7}{8}m_1(I).$$

Prove that $m_1(E) = 0$.

Problem 2: Let f be a non-negative continuous function on \mathbb{R} , and

$$\int_{\mathbb{R}} f dm_1 < \infty.$$

Is it true that f is bounded on \mathbb{R} ?

Problem 3: Let f be a non-negative measurable function on \mathbb{R} , and

$$\int_{\mathbb{R}} f dm_1 = 2021.$$

Show that the following limit exists, and compute it:

$$\lim_{n \to \infty} \int n \cdot \log\left(1 + \frac{f^3}{n^3}\right) dm_1.$$

Hint: for any $x \ge 0$, we have $1 + x^3 \le (1 + x)^3$.

Problem 4: Consider a measure space (X, \mathfrak{A}, μ) , and $\{f_n\}_{n=1}^{\infty}$ is a sequence of real-valued measurable functions on X.

a. Assume $\mu(X) = 1$, and the sequence $\{f_n\}_{n=1}^{\infty}$ converges to zero almost everywhere. Is it true that it converges to zero in measure?

b. Assume $\mu(X) = \infty$, and the sequence $\{f_n\}_{n=1}^{\infty}$ converges to zero almost everywhere. Is it true that it converges to zero in measure?

Problem 5: Let (X, \mathfrak{A}, μ) be a σ -finite measure space, and $f: X \to [0, \infty)$ be a measurable function. For $a \in \mathbb{R}$ define $h(a) = \mu(\{x: f(x) > a\})$. Prove that h is continuous m_1 -almost everywhere, and that

$$\int_X f d\mu = \int_{[0,\infty)} h(a) dm_1(a)$$

As always, m_1 denotes the Lebesgue measure on \mathbb{R} .

Problem 6: Denote the total variation of a function f on an interval [a, b] by $TV(f_{[a,b]})$. Assume $TV(f_{[a,b]}) < \infty$ and define $v(x) = TV(f_{[a,x]}), x \in [a, b]$. Show that $|f'| \leq v'$ almost everywhere on [a, b] and deduce that

$$\int_{[a,b]} |f'| dm_1 \leqslant v(b).$$

Problem 7: Let $f(x) = x^2 \sin(1/x)$, $g(x) = x^2 \sin(1/x^2)$, and f(0) = g(0) = 0. Show that both f and g are differentiable everywhere on \mathbb{R} . Then show that $TV(f_{[-1,1]}) < \infty$ and $TV(g_{[-1,1]}) = \infty$.