Qualifying test

Solve any five problems; present a clear solution with all the relevant details and references

In what follows, m_{p} denotes the Lebesgue measure on \mathbb{R}^{p}.
Problem 1:. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set, and for any interval I we have

$$
m_{1}(E \cap I) \leqslant \frac{7}{8} m_{1}(I)
$$

Prove that $m_{1}(E)=0$.
Problem 2:. Let f be a non-negative continuous function on \mathbb{R}, and

$$
\int_{\mathbb{R}} f d m_{1}<\infty
$$

Is it true that f is bounded on \mathbb{R} ?
Problem 3:. Let f be a non-negative measurable function on \mathbb{R}, and

$$
\int_{\mathbb{R}} f d m_{1}=2021
$$

Show that the following limit exists, and compute it:

$$
\lim _{n \rightarrow \infty} \int n \cdot \log \left(1+\frac{f^{3}}{n^{3}}\right) d m_{1}
$$

Hint: for any $x \geqslant 0$, we have $1+x^{3} \leqslant(1+x)^{3}$.
Problem 4:. Consider a measure space (X, \mathfrak{A}, μ), and $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of real-valued measurable functions on X.
a. Assume $\mu(X)=1$, and the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to zero almost everywhere. Is it true that it converges to zero in measure?
b. Assume $\mu(X)=\infty$, and the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to zero almost everywhere. Is it true that it converges to zero in measure?

Problem 5: Let (X, \mathfrak{A}, μ) be a σ-finite measure space, and $f: X \rightarrow[0, \infty)$ be a measurable function. For $a \in \mathbb{R}$ define $h(a)=\mu(\{x: f(x)>a\})$. Prove that h is continuous m_{1}-almost everywhere, and that

$$
\int_{X} f d \mu=\int_{[0, \infty)} h(a) d m_{1}(a)
$$

As always, m_{1} denotes the Lebesgue measure on \mathbb{R}.
Problem 6:. Denote the total variation of a function f on an interval $[a, b]$ by $T V\left(f_{[a, b]}\right)$. Assume $T V\left(f_{[a, b]}\right)<\infty$ and define $v(x)=T V\left(f_{[a, x]}\right), x \in[a, b]$. Show that $\left|f^{\prime}\right| \leqslant v^{\prime}$ almost everywhere on $[a, b]$ and deduce that

$$
\int_{[a, b]}\left|f^{\prime}\right| d m_{1} \leqslant v(b)
$$

Problem 7: Let $f(x)=x^{2} \sin (1 / x), g(x)=x^{2} \sin \left(1 / x^{2}\right)$, and $f(0)=g(0)=0$. Show that both f and g are differentiable everywhere on \mathbb{R}. Then show that $T V\left(f_{[-1,1]}\right)<\infty$ and $T V\left(g_{[-1,1]}\right)=\infty$.

