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Please work five problems out of seven. Clearly indicate which problems
are to be graded.

1. Calculate the integral. Justify all steps.

lim
n→∞

∫ ∞

0

dx

(1 + x
n
)n
.

2. Let f(x, y) = xy
(x2+y2)2

and S = {(x, y)||x| < 1, |y| < 1}. Show that f
is not integrable over S with respect to 2-dimensional Lebesgue measure yet
the iterated integrals over S exist and are equal.

3. Let 1 ≤ p <∞, δ > 0 and suppose that f : R→ R is continuous with
compact support. Define

fδ(x) =
1

δ

∫ x+δ

x

f(t)dt.

Show that
lim
δ→0
‖f − fδ‖p = 0.

Here ‖ · ‖p is the norm in Lp(R).
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4. Assuming the notation, hypotheses and result of Problem 3, show that

‖gδ‖ ≤ ‖g‖p.

( Hint : Minkowski’s inequality. ) Using the density of the continuous com-
pactly supported functions in Lp, show that the result of Problem 3 extends
to the Lp spaces.

5. Let F : R → R be continuous, increasing with limx→∞F (x) = 1 and
limx→−∞F (x) = 0. Show that

a)
∫∞
−∞ F (x)dF (x) = 1/2, (Stieltjes integral)

b)
∫∞
−∞(F (x+ c)− F (x))dx = c.

6. Let (Ω,F) and (Ω
′
,F ′

) be measurable spaces and T : Ω→ Ω
′
. Define

T−1F ′
= {T−1A

′|A′ ∈ F ′} and TF = {A′|T−1A
′ ∈ F}. Show that T−1F ′

and TF are σ-fields. Also show that measurability F/F ′
of T is equivalent

to T−1F ′ ⊂ F and to F ′ ⊂ TF .

7. Let f ∈ L1(R). Show that there exists continuous, integrable functions
gn such that gn(x)→ f(x) except on a set of Lebesgue measure zero. (Hint
: use the fact that continuous compactly supported functions are dense in
L1(R).)
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