Analysis Qualifying Exam, August 22, 2020
 Part 2: Measure and Integration

Problem 1: Assume f is an increasing and continuous function on a closed interval I, and μ_{f} is the measure defined by f; i.e., for every interval $[a, b) \subset I$ define $\mu_{f}([a, b))=f(b)-f(a)$, and take the Lebesgue-Caratheodory extension (this procedure is assumed to be known).

Take any set $E \subset I$ measurable with respect to μ_{f} and any number $a \in\left(0, \mu_{f}(E)\right)$. Show that there exists a measurable set $E_{a} \subset E$ such that $\mu_{f}\left(E_{a}\right)=a$.

Problem 2: Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-negative measurable functions on a measure space (X, \mathfrak{A}, μ). Assume $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges pointwise to a function f, and assume

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu<\infty
$$

Prove that for every measurable set $E \subset X$ we have

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Problem 3: Let (X, \mathfrak{A}, μ) be a σ-finite measure space, and $f: X \rightarrow[0, \infty]$ be a measurable function. Define $h(a)=\mu(\{x: f(x)>a\})$. Prove that h is continuous almost everywhere, and that

$$
\int_{X} f d \mu=\int_{[0, \infty)} h(a) d m_{1}(a) .
$$

As always, m_{1} denotes the Lebesgue measure on \mathbb{R}.
Problem 4: Let $A \subset[0,1]$ be a measurable set with respect to m_{1}, such that for every interval $I \subset[0,1]$ we have

$$
0<m_{1}(A \cap I)<m_{1}(I)
$$

You can assume the existence of such a set.
Define

$$
F(x):=m_{1}(A \cap[0, x]) .
$$

Show that F is a strictly increasing and absolutely continuous function, but $F^{\prime}(x)$ is equal to zero on a set of positive measure.

Hint: use the Lebesgue differentiation theorem.

