Do all problems. Give complete proofs or explanations, stating any theorems you use. Write on one side of the paper and begin each problem on a new sheet.

Notation: $\left(\mathbb{R}^{d}, \mathcal{L}, m\right)$ denotes the usual d-dimensional Lebesgue measure space.

1. (a) Construct a sequence $\left\{f_{n}\right\}$ of non-negative functions on $[0,1]$ such that

$$
\int_{0}^{1} f_{n}(x) d x \rightarrow 0 \text { as } n \rightarrow \infty
$$

but the sequence $\left\{f_{n}(x)\right\}$ converges for no $x \in[0,1]$.
(b) Construct a non-negative real-valued function on $[0, \infty)$ such that

$$
\int_{0}^{\infty} f(x) d x<\infty
$$

but $f(x)$ does not converge to zero as $x \rightarrow \infty$.
2. Let E be a Lebesgue measurable subset of \mathbb{R}^{d} and for $n=1,2,3, \ldots$ let $f_{n}: E \rightarrow \mathbb{R}$ be non-negative and Lebesgue measurable.

Suppose $\sum_{n=1}^{\infty} \int_{E} f(x) d x<\infty$. Prove that $\sum_{n=1}^{\infty} f_{n}(x)$ converges to a finite sum for a.e. x.
3. Suppose that K is a compact subset of the unit square $[0,1]^{2}$ in \mathbb{R}^{2} and the twodimensional Lebesgue measure of K is greater than $1 / 2$. Show that there are infinitely many lines L in \mathbb{R}^{2} such that $m_{L}(K \cap L)>1 / 2$, where m_{L} is the one-dimensional Lebesgue measure on the line L.
4. Suppose f is a nonnegative Lebesgue measurable function on \mathbb{R}. For each integer k, define $E_{k}=\left\{x \in \mathbb{R}: f(x) \geq 2^{k}\right\}$.

Prove:

$$
\int_{\mathbb{R}} f(x) d x<\infty \text { if and only if } \sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{k}\right)<\infty
$$

Hint: Let $F_{k}=\left\{x \in \mathbb{R}: 2^{k} \leq f(x)<2^{k+1}\right\}$ and show that

$$
\sum_{k=-\infty}^{\infty} 2^{k} m\left(F_{k}\right) \leq \int_{\mathbb{R}} f(x) d x \leq 2 \sum_{k=-\infty}^{\infty} 2^{k} m\left(F_{k}\right)
$$

