Do all problems; state any theorems you use. Assume all functions are real-valued.

1. Let μ and ν be sigmafinite measures on the measurable space (X, \mathcal{M}). Suppose $\nu \ll \mu$ and let f be a nonnegative \mathcal{M}-measurable function on X. Prove:

$$
\int_{X} f d \nu=\int_{X} f\left[\frac{d \nu}{d \mu}\right] d \mu
$$

2. Suppose $f \in L^{1}(\mathbf{R})$ and, for $t \in \mathbf{R}$, define the translate f_{t} by

$$
f_{t}(x)=f(x-t), \quad x \in \mathbf{R} .
$$

(a) For each fixed t, explain why f_{t} is measurable.
(b) For any $\epsilon>0$, show there exists $\delta>0$ such that if $\left|t_{1}-t_{2}\right|<\delta$, then $\left|\mid f_{t_{1}}-f_{t_{2}} \|_{1}<\epsilon\right.$, where $\|\cdot\|_{1}$ denotes the norm in $L^{1}(\mathbf{R})$.
3. Let f be a strictly increasing function on $[0,1]$. By Lebesgue's theorem, f is therefore differentiable almost everywhere on $(0,1)$.
(a) Prove that f^{\prime}, the derivative of f, is integrable on $[0,1]$ and

$$
\int_{0}^{1} f^{\prime} d x \leq f(1)-f(0)
$$

(b) Give an example of such a function f for which this inequality is strict.
4. Suppose $f:[0,1] \rightarrow[0,1]$ is Lebesgue measurable. Show that the graph Γ of $f, \Gamma=$ $\{(x, f(x)): x \in[0,1]\}$, is measurable and has measure zero with respect to Lebesgue measure on $[0,1] \times[0,1]$.
5. Suppose $1<p<\infty$, and $f \in L^{p}([0,1])$. Prove or give a counter-example:

$$
\lim _{j \rightarrow \infty} j^{(2 p-2) / p}\left|\int_{1 /(j+1)}^{1 / j} f(x) d x\right|=0
$$

Hint: Hölder.
6. For sets $A, B \subset \mathbf{R}^{n}$, define

$$
A+B=\left\{x \in \mathbf{R}^{n}: x=a+b \text { for some } a \in A \text { and } b \in B\right\} .
$$

(a) Give an example of closed sets A and B such that $A+B$ is not closed.
(b) If A and B are closed, show that $A+B$ is measurable.

