Doctoral Preliminary Examination in Analysis, January 2005

- 1. (a) Prove that if $f:(a,b) \to \mathbb{R}$ is absolutely continuous, then it is uniformly continuous on (a,b), or give a counterexample.
 - (b) Prove that if f is uniformly continuous on [0, M) for each M > 0 and if $\lim_{x\to\infty} f(x) = L < \infty$, then f is uniformly continuous on $[0, \infty)$.
- 2. Determine the pairs (α, β) of $\alpha > 0$ and $\beta > 0$ for which

$$\lim_{N \to \infty} N^{-\alpha} \sum_{k=1}^{n} k^{\beta} \log k$$

is finite. Here N is an integer > 0.

- 3. Suppose that L_1 and L_2 are λ -systems in a probability space. Is it true that the σ -fields that they generate are independent if and only if the π -systems they generate are independent. Give proof or counterexample.
- 4. Suppose that $f_n : \mathbb{R} \to \mathbb{R}$ are integrable for each $n = 1, 2, \ldots, f_n \to f$ a.e. and

$$\int f_n dm \to \int f dm$$

as $n \to \infty$ where dm is Lebesgue measure. Does it follow that f_n converges to f in L^1 ? If so, give a proof, otherwise a counterexample.

5. Suppose that $f \in L^1[0, 2\pi]$. Show that

$$\lim_{n \to \infty} \int_{0}^{2\pi} f(t) \sin(nt) \, dt = 0.$$

Hint: Suppose f is a step function.

6. Suppose that $g \in L^{\infty}(\mathbb{R})$ is uniformly continuous and $f \in L^{1}(\mathbb{R})$. Show that the convolution

$$f * g(t) = \int_{-\infty}^{\infty} f(t-s)g(s) \, ds$$

is uniformly continuous on $I\!\!R$.