1. Let $\left\{A_{n}\right\}_{n=1}^{\infty},\left\{B_{n}\right\}_{n=1}^{\infty}$ be sequences of subsets of a set Ω. Consider the possible equality

$$
\limsup _{n}\left(A_{n} \cap B_{n}\right)=\left(\limsup _{n} A_{n}\right) \cap\left(\limsup _{n} B_{n}\right)
$$

(a) Show that equality may fail, even if $\Omega=\{1,-1\}$.
(b) Show that equality holds (for any Ω) if $\lim \sup _{n} A_{n}=\lim _{n} A_{n}$.
2. Suppose $f:[0,1] \rightarrow[0,1]$ is continuous and nondecreasing and satisfies $f(0)=0$ and $f(1)=1$. For $t \in[0,1]$ define $\phi(t)=\lambda\{x \in[0,1]: f(x) \leq t\}$, where λ denotes Lebesgue measure. Carefully consider the following:
(a) Is ϕ necessarily continuous from the left?
(b) Is ϕ necessarily continuous from the right?
(c) Do the answers to (a) and/or (b) change if f is strictly increasing?

Note: an answer without proof will receive no credit.
3. Let $\left\{q_{n}\right\}_{n=1}^{\infty}$ be an enumeration of the rationals in $[0,1]$, and let

$$
A=[0,1] \cap\left(\bigcup_{n=1}^{\infty}\left(q_{n}-\frac{1}{2^{n+2}}, q_{n}+\frac{1}{2^{n+2}}\right)\right)
$$

Let $f=\mathbb{I}_{A}:[0,1] \rightarrow \mathbb{R}$, and let λ denote Lebesgue measure on the Borel subsets of $[0,1]$.
(a) Show that $\int_{[0,1]} f d \lambda \leq \frac{1}{2}$.
(b) Suppose that $g:[0,1] \rightarrow \mathbb{R}$ is Riemann integrable. Show that $\int_{[0,1]}|f-g| d \lambda>0$. (Hint: Show that if $\int_{[0,1]}|f-g| d \lambda=0$ then every upper sum for g will be at least 1.)
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Borel measurable, and let λ denote Lebesgue measure. Show that

$$
\frac{1}{8}\left|\int_{[-8,8]} f d \lambda\right| \leq\left(\int_{\mathbb{R}} f^{4} d \lambda\right)^{\frac{1}{4}}
$$

5. Let

$$
f_{n}(x)=\frac{\sin \left(\left(x+\frac{1}{n}\right)^{2}\right)-\sin \left(\left(x-\frac{1}{n}\right)^{2}\right)}{\sin \left(\frac{1}{n}\right)}
$$

Find (if it exists) $\lim _{n \rightarrow \infty} \int_{[0,1]} f_{n} d \lambda$, where λ denotes Lebesgue measure. Be sure to verify the hypotheses of any theorems from measure theory that you may use.
6. Let $\left\{X_{n}, \mathcal{F}_{n}\right\}$ be a nonnegative martingale defined on $(\Omega, \mathcal{F}, \mathbb{P})$.
(a) Show that there exists an integrable random variable $X: \Omega \rightarrow \mathbb{R}$ so that $X_{n} \rightarrow X$ almost surely.
(b) Show that if $\left\{\mathbb{E}\left[X_{n}^{2}\right]\right\}$ is bounded then, for all $\mathrm{n}, \mathbb{E}\left[X \mid \mathcal{F}_{n}\right]=X_{n}$ almost surely.

