Qualifying test

Solve three problems from Part 1 and three problems from Part 2

In what follows, m_p denotes the Lebesgue measure on \mathbb{R}^p .

Part 1

Problem 1: Assume (X, \mathfrak{A}, μ) be a measure space, and the measurable sets A_n are such that

$$\mu(A_n) < n^{-5/4}, \ n = 1, 2, \dots$$

Show that

$$\mu\left(\bigcap_{n=1}^{\infty}\bigcup_{j=n}^{\infty}A_j\right)=0.$$

Problem 2: Let (X, \mathfrak{A}, μ) be a σ -finite measure space. Show that there exists a finite measure ν on (X, \mathfrak{A}) such that $\mu \ll \nu$ and $\nu \ll \mu$.

Problem 3: Assume f is a continuous function from [0, 1] to \mathbb{R} . Show that

$$\lim_{n \to \infty} \int_0^1 (n+1) x^n f(x) dx = f(1).$$

Hint: make a change of variables.

Problem 4: a. Assume f is absolutely continuous on [0, 1], and $f'(x) \ge 0$ almost everywhere on [0, 1] (with respect to m_1). Is it true that $f(0) \le f(1)$?

b. Assume f is continuous on [0, 1] and for some positive δ we have $f'(x) \ge \delta$ almost everywhere on [0, 1]. Is it true that $f(0) \le f(1)$?

Part 2

Problem 5: Assume $f: \mathbb{R} \to \mathbb{R}$ is a non-negative summable function (with respect to m_1). Show that

$$\int_{(0,\infty)} m_1\left(\{x \colon f(x) \ge y\}\right) = \int_{\mathbb{R}} \sin(f(x)) dm_1(x) dm_2(x) d$$

Hint: use Fubini's theorem, but justify every step.

Problem 6: Assume

$$\int_{(1,\infty)} |f|^3 dm_1 < \infty.$$

Is it true that

$$\int_{(1,\infty)} |f|^5 dm_1 < \infty?$$

Problem 7: Assume X, Y, Z are Banach spaces, and let $T: X \to Y$ and $S: Y \to Z$ be linear operators. Assume further that S is continuous and injective, and $S \circ T$ is continuous (from X to Z). Prove that T is continuous.

Hint: Closed graph theorem.

Problem 8: Let $p \in (1, \infty)$ and q be such that 1/p + 1/q = 1. Assume $\{f_n\}_{n=1}^{\infty}$ is a sequence of functions in $L^p(\mathbb{R})$ such that for every $g \in L^q(\mathbb{R})$ we have

$$\sup_{n} \int |f_n(x)g(x)| dm_1(x) < \infty.$$

Show that

$$\sup_{n} \|f_n\|_p < \infty.$$

Hint: this is based on another consequence of the Baire category theorem.