Qualifying test

Solve any five problems

In what follows, m_{p} denotes the Lebesgue measure on \mathbb{R}^{p}.
Problem 1: Let A, B, C be three Lebesgue measurable sets in $[0,1]$. Assume that almost every point x in $[0,1]$ belongs to at least two of these sets. Prove that at least one of these sets has Lebesgue measure greater or equal to $2 / 3$.

Problem 2: Construct a sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$, and a function g such that:

$$
\int_{\mathbb{R}}\left|f_{n}\right| d m_{1}=2, \quad \int_{\mathbb{R}}|g| d m_{1}=1
$$

and $f_{n} \rightarrow g$ almost everywhere.
Problem 3: Assume $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of non-decreasing absolutely continuous functions on $[0,1]$. Assume also that the series

$$
\sum_{n=1}^{\infty} f_{n}(x)
$$

converges to a real number for every x. Prove that the function

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x)
$$

is absolutely continuous on $[0,1]$.
Problem 4: Assume f is a continuous bounded function on $[0, \infty)$. Show that

$$
\lim _{n \rightarrow \infty} \int_{[0, \infty)} n e^{-n x} f(x) d m_{1}(x)=f(0)
$$

Problem 5: a. Prove that $L^{3}(0,1) \subset L^{2}(0,1)$.
b. Give an example of a bounded linear functional F on $L^{3}(0,1)$ which is not a restriction of a bounded linear functional on $L^{2}(0,1)$. I.e., there is no linear functional G on $L^{2}(0,1)$ such that

$$
F(f)=G(f), \quad \forall f \in L^{3}(0,1)
$$

Problem 6: Assume X is a Banach space, and $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$. Show that the sequence $\left\{x_{n}\right\}$ is bounded in X if and only if for every bounded linear functional f, the sequence $\left\{f\left(x_{n}\right)\right\}$ is bounded in \mathbb{R}.

Problem 7: Show that $\ell^{1}(\mathbb{N})$ is not a Hilbert space; i.e., there is no inner product (\cdot, \cdot) such that

$$
(x, x)=\|x\|_{1}^{2}, \quad \forall x \in \ell^{1}(\mathbb{N})
$$

Hint: $\ell^{1}(\mathbb{N})$ is separable.

