Qualyfying test

In all problems, m_{1} denotes the Lebesgue measure on \mathbb{R} defined on the Lebesgue sigma-algebra \mathfrak{M}_{1}.

Problem 1: Let f be a summable function on \mathbb{R} with respect to the Lebesgue measure. Prove that the following are equivalent.

- $f=0$ a.e. on \mathbb{R};
- $\int_{\mathbb{R}} f g d m_{1}=0$ for every bounded measurable function g;
- $\int_{A} f d m_{1}=0$ for every measurable set A;
- $\int_{G} f d m_{1}=0$ for every open set G.

Problem 2: Let $\left\{f_{n}\right\}$ be a sequence of non-negative summable functions on the real line with respect to m_{1}, and for every x assume $f_{n+1}(x) \leqslant f_{n}(x)$. Prove that if

$$
\int_{\mathbb{R}} f_{n} d m_{1} \rightarrow 0 \text { as } n \rightarrow \infty
$$

then $f_{n} \rightarrow 0$ almost everywhere. Is the converse true?
Problem 3: a) Show that if f is a non-negative summable function on $[0,1]$ with respect to m_{1}, then $f(x)<\infty$ for almost every x.
b) Let $\left\{q_{n}\right\}_{n=1}^{\infty}=\mathbb{Q} \cap[0,1]$, and

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n} \sqrt{\left|x-q_{n}\right|}}
$$

Show that f is unbounded on any open interval $I \subset[0,1]$. Is it true that $f(x)<\infty$ for almost every x (explain)?

Problem 4: Let

$$
f(x, y)= \begin{cases}1 / x^{2}, & 0<y<x<1 \\ -1 / y^{2}, & 0<x<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

Compute

$$
\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x, y) d m_{1}(x)\right) d m_{1}(y), \text { and } \int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x, y) d m_{1}(y)\right) d m_{1}(x) .
$$

Explain why the results are consistent with the Fubini theorem.

