PDE 2, August 2018 Qualifying Exam

1. Consider the variable-coefficient PDE

$$
\begin{equation*}
y u_{x x}-2 u_{x y}+x u_{y y}=0 \tag{5}
\end{equation*}
$$

Find the regions in the $x y$ plane where this PDE is elliptic, parabolic, and hyperbolic. Sketch these regions.
2. Consider the Hopf equation

$$
\begin{array}{ll}
u_{t}+u u_{x}=0 & \text { for }-\infty<x<\infty, t>0 \\
u(x, 0)=\phi(x) & \text { for }-\infty<x<\infty \tag{7}
\end{array}
$$

where $\phi(x)$ has compact support (i.e. there exists some finite interval such that ϕ vanishes outside that interval). Define the 'mass' of the solution as

$$
\begin{equation*}
M(t)=\int_{-\infty}^{\infty} u(x, t) d x \tag{8}
\end{equation*}
$$

a) Prove that $M(t)$ is conserved.
(Hint: the conservative form of the PDE might help, but this is not the only approach that works.)
b) Now consider Burgers equation

$$
\begin{array}{ll}
u_{t}+u u_{x}=\nu u_{x x} & \text { for }-\infty<x<\infty, t>0 \\
u(x, 0)=\phi(x) & \text { for }-\infty<x<\infty \tag{10}
\end{array}
$$

where again $\phi(x)$ has compact support. Is the mass still conserved? If so, prove it. If not, calculate the rate at which mass changes.
3. Consider the wave equation in arbitrary spatial dimension \mathbb{R}^{d}

$$
\begin{align*}
& u_{t t}-c^{2} \Delta u=0 \quad \text { for } \boldsymbol{x} \in \mathbb{R}^{d}, t>0 \tag{11}\\
& u(\boldsymbol{x}, 0)=\phi(\boldsymbol{x}) \tag{12}\\
& u_{t}(\boldsymbol{x}, 0)=\psi(\boldsymbol{x}) \tag{13}
\end{align*}
$$

where ϕ and ψ both have finite L^{1} and L^{2} norms. We want to prove that a solution exists using the Fourier transform

$$
\begin{align*}
& f(\boldsymbol{x}, t)=\int_{\mathbb{R}^{d}} \hat{f}(\boldsymbol{k}, t) e^{2 \pi i \boldsymbol{k} \cdot \boldsymbol{x}} d \boldsymbol{k} \tag{14}\\
& \hat{f}(\boldsymbol{k}, t)=\int_{\mathbb{R}^{d}} f(\boldsymbol{x}, t) e^{-2 \pi i \boldsymbol{k} \cdot \boldsymbol{x}} d \boldsymbol{x} \tag{15}
\end{align*}
$$

To this end, do the following:
a) Find the solution to the PDE in Fourier space, i.e. find the function $\hat{u}(\boldsymbol{k}, t)$.
b) Given that the transforms of ϕ and ψ both have finite L^{1} and L^{2} norms, show that $\hat{u}(\boldsymbol{k}, t)$ also has finite L^{1} and L^{2} norms.
c) Why does this imply that a physical solution $u(\boldsymbol{x}, t)$ exists for all time?
4. Consider the nonlinear PDE for $u(x, t)$

$$
\begin{array}{ll}
u_{t}=\sin (a u)+D u_{x x}, & \text { for } 0<x<L, t>0 \\
u(0, t)=u(L, t)=0, & \text { for } t>0 \tag{17}
\end{array}
$$

where a and D are constants and $D>0$.
a) Perform linear stability analysis about the trivial solution $u_{0}(x, t)=0$. What is the condition for an instability to exist?
b) Now let $L=\pi, D=2$, and $a=10$. In this case, how many unstable modes are there? Which one will dominate in long time?

