PDE 2, August 2019 Qualifying Exam

1. Consider the IBVP for $u(x, t)$

$$
\begin{array}{ll}
u_{t}=D u_{x x} & \text { for } 0<x<2 \pi, t>0 \\
u(x, 0)=\sin (x) & \text { for } 0<x<2 \pi \\
u(0, t)=0 & \text { for } t>0 \\
u(2 \pi, t)=2 \sinh (t) & \text { for } t>0 \tag{8}
\end{array}
$$

where $D>0$. Using the maximum principle, decide if each of the following are possible or impossible, and give a brief justification for your answer. In each case, suppose x_{0} is an arbitrary point inside the interval $(0,2 \pi)$.
a) $u\left(x_{0}, 1\right)=-3 / 2$
b) $u\left(x_{0}, 1\right)=-1 / 2$
c) $u\left(x_{0}, 1\right)=3 / 2$
d) $u\left(x_{0}, 1\right)=3$
e) $\lim _{t \rightarrow \infty} u\left(x_{0}, t\right)=+\infty$
f) $\lim _{t \rightarrow \infty} u\left(x_{0}, t\right)=5$
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f \in L^{1}$. Define the distribution f as

$$
\begin{equation*}
(f, \phi)=\int_{-\infty}^{\infty} f(x) \phi(x) d x \tag{9}
\end{equation*}
$$

for any function ϕ in the space of C^{∞} and compact support. Prove that this distribution is continuous. i.e. Prove that if $\phi_{n} \rightarrow \phi$ uniformly, then $\left(f, \phi_{n}\right) \rightarrow(f, \phi)$.
3. Consider Laplace's equation on the interior of the unit disk Ω, with Neumann boundary conditions

$$
\begin{array}{ll}
\Delta u=0 & \text { for } r<1 \\
\frac{\partial u}{\partial n}=g(\theta) & \text { for } r=1 \tag{11}
\end{array}
$$

Suppose $g(\theta)$ is nice enough to have a Fourier series,

$$
\begin{equation*}
g(\theta)=\sum_{n=0}^{\infty} a_{n} \cos (n \theta)+b_{n} \sin (n \theta) \tag{12}
\end{equation*}
$$

a) Find the exact solution for $u(x, t)$. Write your answer in terms of the coefficients a_{n} and b_{n} given above.
b) State the compatibility condition for the Poisson equation with Neumann boundary conditions.
c) Appealing to the solution you found in part a, demonstrate that a solution $u(x, t)$ exists if and only if the compatibility condition is satisfied.
4. Consider the inhomogeneous Burger-Hopf equation for $u(x, t)$

$$
\begin{align*}
& u_{t}+u u_{x}=2, \quad x \in(-\infty, \infty), t>0 \tag{13}\\
& u(x, 0)=\phi(x) \tag{14}
\end{align*}
$$

where $\phi(x)$ is some generic bell curve shape.
a) Apply the method of characteristics to this problem. Determine u on each characteristic curve.
b) Sketch the characteristics.
c) Sketch the corresponding solution at a few different time values.
d) Find the time at which a shock first develops (your answer will depend on $\phi(x)$).

