TOPOLOGY QUALIFYING EXAM August 2007

PART I.

Do one of the following:

1.(a) Show that a space X is not connected if and only if there exists a continuous surjection $\phi: X \to \{0, 1\}$ to the two-point discrete space $\{0, 1\}$.

(b) Let $f: X \to Y$ be a continuous map. Show: If X is connected then the image f(X) is connected.

2. Show that a compact Hausdorff space is normal.

(Hint: First show that a compact Hausdorff space is regular).

PART II.

Do any three of Problems 1, 2, 3, or 4 and one of Problems 5 or 6.

1.(a) Let Γ be a graph (i.e. a 1-dimensional CW-complex). Describe an algorithm for computing a presentation for the fundamental group of Γ .

(b) Use the algorithm in (a) to find a presentation for the fundamental group of the graph below. (Explain how the generators relate to the graph).

(c) Prove that any subgroup of a free group is free.

2. (a) Construct all connected covering spaces of $S^1 \vee S^2$ (the one-point union of the 1- and 2sphere). Carefully explain why your list is complete. Describe (by pictures) the action of the group of Deck-transformations on the covering space.

(b) Construct all connected covering spaces of $P^2 \vee S^2$ (the one-point union of the projective plane and 2-sphere). Carefully explain why your list is complete. Describe (by pictures) the action of the group of Deck-transformations on the covering space. 3. Let X be the union of the torus $T = S^1 \times S^1$ with the disk D^2 , where D^2 is attached to T by identifying ∂D^2 with a curve $S^1 \times \{x_0\}$, where $\{x_0\}$ is a point of S^1 , see the figure below.

- (a) Calculate $\pi_1(X)$.
- (b) Construct all connected covering spaces of X. (Explain using pictures).
- (c) Is T a retract of X? (Justify your answer)

4. Let X be the torus $T = S^1 \times S^1$ with an open disk removed and let δ be the boundary curve of X (= boundary of the deleted disk). Let $\alpha = S^1 \times \{x_0\}$ and $\beta = \{y_0\} \times S^1$ (for a point $\{x_0\}$ resp. $\{y_0\}$ of S^1), let ϵ be a circle on X that bounds a disk on X, and let $\gamma = \alpha \cup \beta$ (a figure eight), as indicated in the figures below.

- (a) Is γ a retract of X? (Justify your answer)
- (b) Is α a retract of X? (Justify your answer)
- (c) Is ϵ a retract of X? (Justify your answer)
- (d) Is δ a retract of X? (Justify your answer)

5. For a closed orientable 2-manifold M of genus $g \ge 0$ compute $H_q(M)$.

(Hint: Use the Mayer-Vietoris sequence and the fact that there is a band-neighborhood U of a wedge Γ of circles in M that deformation-retracts to Γ so that $V = \overline{M - U}$ is a disk.)

6. Let N be a subset of S^3 that is homeomorphic to a solid torus $D^2 \times S^1$. Compute $H_q(\overline{S^3 - N})$.

(Hint: Apply the Mayer-Vietoris sequence to $\overline{S^3 - N}$ and N).

PART III.

Do any two of the following Problems.

1. (a) Given a smooth map $f: M \to N$, where M and N are smooth oriented compact manifolds without boundary, both of the same dimension, write the definition of the *degree* of f using the basic notions of differential topology. (Hint: the degree of f is an integer.)

(b) Let C denote the complex numbers, and let \hat{C} denote the Riemann sphere, i.e. $\hat{C} = C \cup \{\infty\}$. As you know, \hat{C} is a 2-dimensional manifold, diffeomorphic to the sphere S^2 . Define $f : \hat{C} \to \hat{C}$ by

$$f(z) = \frac{z^2}{z^3 + z^2 - 1}.$$

(Of course, this formula is not defined at a few points of \hat{C} , but there is a unique smooth extension to all of \hat{C} .) Using the definition you gave in (a), calculate the degree of f.

2. Let v be a smooth vector field on the two-dimensional sphere S^2 . Suppose v vanishes at precisely two points, p and q, of S^2 . If the index of v at p is 5, what is the index of v at q? Be sure to explain your reasoning.

3. Let S^4 denote the four-dimensional sphere, $S^4 = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 1\}.$ Suppose $f : S^4 \to S^4$ is a smooth map with no fixed points. (a) What is the degree of f? (b) Is f homotopic to the identity map?