PART I.

Do one of the following:

1.(a) Show that a space X is not connected if and only if there exists a continous surjection $\phi: X \rightarrow\{0,1\}$ to the two-point discrete space $\{0,1\}$.
(b) Let $f: X \rightarrow Y$ be a continuous map. Show: If X is connected then the image $f(X)$ is connected.
2. Show that a compact Hausdorff space is normal.
(Hint: First show that a compact Hausdorff space is regular).

PART II.

Do any three of Problems 1, 2, 3, or 4 and one of Problems 5 or 6.
1.(a) Let Γ be a graph (i.e. a 1-dimensional CW-complex). Describe an algorithm for computing a presentation for the fundamental group of Γ.
(b) Use the algorithm in (a) to find a presentation for the fundamental group of the graph below. (Explain how the generators relate to the graph).

(c) Prove that any subgroup of a free group is free.
2. (a) Construct all connected covering spaces of $S^{1} \vee S^{2}$ (the one-point union of the 1- and 2sphere). Carefully explain why your list is complete. Describe (by pictures) the action of the group of Deck-transformations on the covering space.
(b) Construct all connected covering spaces of $P^{2} \vee S^{2}$ (the one-point union of the projective plane and 2 -sphere). Carefully explain why your list is complete. Describe (by pictures) the action of the group of Deck-transformations on the covering space.
3. Let X be the union of the torus $T=S^{1} \times S^{1}$ with the disk D^{2}, where D^{2} is attached to T by identifying ∂D^{2} with a curve $S^{1} \times\left\{x_{0}\right\}$, where $\left\{x_{0}\right\}$ is a point of S^{1}, see the figure below.

(a) Calculate $\pi_{1}(X)$.
(b) Construct all connected covering spaces of X. (Explain using pictures).
(c) Is T a retract of X ? (Justify your answer)
4. Let X be the the torus $T=S^{1} \times S^{1}$ with an open disk removed and let δ be the boundary curve of X ($=$ boundary of the deleted disk). Let $\alpha=S^{1} \times\left\{x_{0}\right\}$ and $\beta=\left\{y_{0}\right\} \times S^{1}$ (for a point $\left\{x_{0}\right\}$ resp. $\left\{y_{0}\right\}$ of S^{1}), let ϵ be a circle on X that bounds a disk on X, and let $\gamma=\alpha \cup \beta$ (a figure eight), as indicated in the figures below.
(a) Is γ a retract of X ? (Justify your answer)
(b) Is α a retract of X ? (Justify your answer)
(c) Is ϵ a retract of X ? (Justify your answer)
(d) Is δ a retract of X ? (Justify your answer)

5. For a closed orientable 2-manifold M of genus $g \geq 0$ compute $H_{q}(M)$.
(Hint: Use the the Mayer-Vietoris sequence and the fact that there is a band-neighborhood U of a wedge Γ of circles in M that deformation-retracts to Γ so that $V=\overline{M-U}$ is a disk.)
6. Let N be a subset of S^{3} that is homeomorphic to a solid torus $D^{2} \times S^{1}$. Compute $H_{q} \overline{\left(S^{3}-N\right)}$.
(Hint: Apply the Mayer-Vietoris sequence to $\overline{S^{3}-N}$ and N).

PART III.

Do any two of the following Problems.

1. (a) Given a smooth map $f: M \rightarrow N$, where M and N are smooth oriented compact manifolds without boundary, both of the same dimension, write the definition of the degree of f using the basic notions of differential topology. (Hint: the degree of f is an integer.)
(b) Let C denote the complex numbers, and let \hat{C} denote the Riemann sphere, i.e. $\hat{C}=C \cup\{\infty\}$. As you know, \hat{C} is a 2 -dimensional manifold, diffeomorphic to the sphere S^{2}. Define $f: \hat{C} \rightarrow \hat{C}$ by

$$
f(z)=\frac{z^{2}}{z^{3}+z^{2}-1} .
$$

(Of course, this formula is not defined at a few points of \hat{C}, but there is a unique smooth extension to all of \hat{C}.) Using the definition you gave in (a), calculate the degree of f.
2. Let v be a smooth vector field on the two-dimensional sphere S^{2}. Suppose v vanishes at precisely two points, p and q, of S^{2}. If the index of v at p is 5 , what is the index of v at q ? Be sure to explain your reasoning.
3. Let S^{4} denote the four-dimensional sphere,
$S^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in R^{5}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}=1\right\}$.
Suppose $f: S^{4} \rightarrow S^{4}$ is a smooth map with no fixed points.
(a) What is the degree of f ?
(b) Is f homotopic to the identity map?

