TOPOLOGY QUALIFYING EXAM August 2009

Notations: X, Y, ... are topological spaces, \mathbb{R}^n Euclidean *n*-space, \mathbb{S}^n unit *n*-sphere in \mathbb{R}^{n+1} .

PART I.

Do two of the following:

1. Suppose that f: $X \to Y$ is a homotopy equivalence.

(a) If X is path connected is Y path connected? (Give a proof or counterexample).

(b) If X is compact is Y compact? (Give a proof or counterexample).

2. Let $p: X \to Y$ be a quotient map and $h: X \to Z$ a continuous map such that for each $y \in Y$, h is constant on $p^{-1}(y)$. Construct a continuous map $k: Y \to Z$ such that $h = k \circ p$. (Show that your map is well-defined and continuous).

- 3. Prove the following two statements.
- (a) A compact subset of a Hausdorff space is closed.
- (b) A closed subset of a compact space is compact. .

PART II.

Do three of the following:

1. (a) Let Z be \mathbb{R}^3 with the x-axis and y-axis removed. Compute $\pi_1(Z, z_0)$ (pick a point $z_0 \in Z$). Describe curve(s) in \mathbb{R}^3 representing the generator(s) of $\pi_1(Z, z_0)$.

(b) Let X be the quotient space of S^2 obtained by identifying the north and south poles to a single point. Compute $\pi_1(X, x_0)$ (pick a point $x_0 \in X$). Describe curve(s) in X representing the generator(s) of $\pi_1(X, x_0)$.

(c) The Klein Bottle K can be obtained from two copies M_1 , M_2 of the Mobius band by gluing their boundary circles together via a homeomorphism. Use this description of K to find a presentation for $\pi_1(K, y_0)$ (pick a point $y_0 \in K$). Describe curve(s) in M_i representing the generator(s) of $\pi_1(K, y_0)$.

2. (a) Construct all connected covering spaces of $\mathbb{P}^2 \vee \mathbb{S}^2$ (The one-point union of the projective plane and 2-sphere).

Carefully explain why your list is complete. Describe the group of covering transformations.

(b) Construct all connected covering spaces of $\mathbb{S}^1 \vee \mathbb{S}^2$. Carefully explain why your list is complete. Describe the group of covering transformations.

3. (a) Let T be the torus $T = S^1 \times S^1$, let $A = S^1 \times \{x_0\}$ (for a point $\{x_0\}$ of S^1). Let X be obtained from T by removing a small open disk (disjoint from A).

Is A a retract of X? (Either describe a retraction or show that no retraction exists).

Is A a deformation retract of X? (Justify your answer)

(b) Let M be the Moebius band and let C be its boundary curve. Is C a retract of M? (Either describe a retraction or show that no retraction exists).

4. Let G be the set of Deck transformations (covering transformations) of a covering $p: \tilde{X} \to X$.

(a) Show that G is a group under composition.

(b) Let $H = p_*\pi(\tilde{X}, \tilde{x}_0) \subset \pi(X, x_0)$. Construct an epimorphism $\phi : N(H) \to G$ with kernel H.

(Here N(H) is the normalizer of H in $\pi(X, x_0)$). Define ϕ , show it is well-defined, show ϕ is surjective, show $ker(\phi) = H$. You need not show that ϕ is a homomorphism).