TOPOLOGY QUALIFYING EXAM May 2009

Notations: X, Y, \ldots are topological spaces, R^{n} Euclidean n-space, S^{n} unit n-sphere in R^{n+1}, D^{n} unit n-ball in R^{n}, I unit interval in R^{1}.

PART I.

Do two of the following:

1.(a) Show that a space X is not connected if and only if there exists a continous surjection $\phi: X \rightarrow\{0,1\}$ to the two-point discrete space $\{0,1\}$.
(b) Let $f: X \rightarrow Y$ be a continuous map. Show: If X is connected then the image $f(X)$ is connected.
2. Prove that a compact Hausdorff space is regular.
3. (a) Construct a quotient map $p: S^{1} \times I \rightarrow D^{2}$ such that $p(x \times 0)=0$ (the origin of D^{2}) and $p(x \times 1)=x$.
(b) Let X be a space and let $f: S^{1} \rightarrow X$ be a continuous map.

Show that f is homotopic to a constant map c if and only if f can be extended to a continuous map $\hat{f}: D^{2} \rightarrow X$ (i.e. $\hat{f} \cdot i=f$ where $i: S^{1} \rightarrow D^{2}$ is the inclusion map).

PART II.

Do three of the following:

1. (a) Let $f, g: X \rightarrow Y$ be homotopic maps. Let $x_{0} \in X$.

Considering the trace of x_{0} under the homotopy between f and g describe how the induced homomorphisms $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right)$ and $g_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, g\left(x_{0}\right)\right)$ are related.
(b) Let A be a deformation retraction of X. Let $x_{0} \in A$. Prove that the homomorphism $i_{*}: \pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ induced by inclusion $i: A \rightarrow X$ is an isomorphism.
(Note: You can not assume that A is a strong deformation retraction of X).
2. (a) Let X be R^{3} with the x-axis and y-axis removed. Compute $\pi_{1}(X)$.
(b) Let Y be the subspace of R^{3} consisting of S^{2} together with the z-axis. Compute $\pi_{1}(Y)$.
(c) The Klein Bottle K can be obtained from two copies of the Mobius band by gluing their boundary circles together via a homeomorphism. Use this description of K to find a presentation for $\pi_{1}(K)$.
3. (a) List all (connected) covering spaces of S^{1} and list all (connected) covering spaces of P^{2}.
(b) Construct all regular connected covering spaces of $S^{1} \vee P^{2}$ (the wedge of S^{1} and P^{2}). Carefully explain why your list is complete. Describe (by pictures) the action of the group of Decktransformations on the covering spaces.
(c) Construct a connected non-regular covering space of $S^{1} \vee P^{2}$.
4. Consider the following covering spaces $p: E_{i} \rightarrow B$ of the wedge B of two circles, where the 1-cells labeled a, b in E_{i} (subscripts are omitted) are the lifts of the 1-cells labeled a and b in B.

B

Let $A=[a]$ and $B=[b]$ be generators of $\pi\left(B, b_{0}\right)$.
(a) Give a presentation of the group $p_{1 *} \pi\left(E_{1}, e_{1}\right)$ as a subgroup of $\pi\left(B, b_{0}\right)$.

Describe the action of the group G_{1} of deck transformations on E_{1} and give a presentation (in terms of generators and relations) for G_{1}.
(b) Give a presentation of the group $p_{2 *} \pi\left(E_{2}, e_{2}\right)$ as a subgroup of $\pi\left(B, b_{0}\right)$.

Describe the action of the group G_{2} of deck transformations on E_{2} and give a presentation (in terms of generators and relations) for G_{2}.

