Topology Qualifying Exam

Make sure you explicitly mention any theorems you use and explain why the relevant hypotheses are satisfied. Unless otherwise stated, all functions are assumed to be continuous.

Part I

Attempt two of the three problems in this section (mark which ones you are attempting)

1. Let X and Y be locally compact and Hausdorff topological spaces. Recall that the one-point compactification of X is the topological space $\hat{X} = X \cup \{\infty\}$ topologized so that open sets consist of open sets $U \subset X$ and sets of the form $(X \setminus C) \cup \{\infty\}$, where $C \subset X$ is compact. Next, recall that a function $f : A \to B$ is proper if for each compact $C \subset B$, $f^{-1}(C) \subset A$ is compact.

Let \hat{X} be the one-point compactification of X, let \hat{Y} be the one-point compactification of Y, and let $f: X \to Y$. Prove that f can be extended to a continuous map $\hat{f}: \hat{X} \to \hat{Y}$ if and only if f is proper.

2. Let X, Y, and Z be topological spaces and let $f : X \to Z$ and $g : Y \to Z$ be continuous functions. The fiber product is defined as

$$X \times_Z Y = \{(x, y) \in X \times Y \mid f(x) = g(y)\},\$$

topologized using the subspace topology of the product topology on $X \times Y$.

- (a) Prove that the projection maps $p_X : X \times_Z Y \to X$ and $p_Y : X \times_Z Y \to Y$ are continuous.
- (b) Prove that if W is a topological space and $h: W \to X \times_Z Y$ is a function then h is continuous if and only if both $p_X \circ h$ and $p_Y \circ h$ are continuous.
- 3. Let (X, d) be a metric space and let A be a compact subspace. Prove that A is both closed and bounded. For this problem you may assume without proof that for any $y \in X$ the function $f: X \to \mathbb{R}$ given by f(x) = d(x, y) is continuous.

Part II

Attempt three of the four problems in this section (mark which ones you are attempting)

Let $G = \mathbb{Z} * \mathbb{Z} = \langle a, b \rangle$ and let $X = S^1 \vee S^1$. Let x_0 be the wedge point of X and recall that $\pi_1(S^1 \vee S^1, x_0) \cong G$ via the map taking the homotopy classes of α and β in the figure above to a and b

- (a) Construct a connected 3-fold irregular cover $p : \tilde{X} \to X$ of X. Make sure to explain why your cover is irregular.
- (b) Pick a point $\tilde{x}_0 \in \tilde{X}$ that covers x_0 and write a presentation for $p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ using the generators a and b. What is the index of this subgroup?
- (c) Recall that a subgroup H of G is *self-normalizing* if the normalizer $N_G(H)$, of H in G is equal to H. Explain why $p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ is a self-normalizing subgroup of G.
- 2. \mathbb{RP}^2 can be constructed as follows: let $D^2 = \{z \in \mathbb{C} \mid |z| \leq 1\}$ be the disk and let $S^1 = \partial D^2 = \{z \in \mathbb{C} \mid |z| = 1\}$ be the circle. \mathbb{RP}^2 can then be formed by attaching D^2 to S^1 via the 2:1 map $f : \partial D^2 \to S^1$ given by $f(z) = z^2$

Use the above description and Van Kampen's theorem to find a presentation for $\pi_1(\mathbb{RP}^2)$. Make sure to be very clear which sets you are decomposing \mathbb{RP}^2 into and explain why they satisfy all the relevant hypotheses.

This is a very common group, which group is it?

- 3. Let X be a path connected space, $p : \tilde{X} \to X$ be a covering, and $A \subset X$ a path connected subspace.
 - (a) Let $x_0 \in A$ and let $\tilde{x}_0 \in \tilde{X}$ such that $p(\tilde{x}_0) = x_0$. If \tilde{A} is the component of $p^{-1}(A)$ that contains \tilde{x}_0 prove that $p|_{\tilde{A}} : \tilde{A} \to A$ is a covering.
 - (b) Let $\iota : A \to X$ be the inclusion map. Prove that the set of connected components of $p^{-1}(A)$ is in bijection with the coset space $\pi_1(X, x_0)/\iota_*(\pi_1(A, x_0))$.
- 4. Let X be a topological space and let $A \subset X$ be a subspace. Suppose that $f_t : X \to X$ is a deformation retract from X to A. Prove that the inclusion $\iota : A \to X$ is a homotopy equivalence.

1.