Topology Qualifying Exam

Make sure you explicitly mention any theorems you use and explain why the relevant hypotheses are satisfied. Unless otherwise stated, all functions are assumed to be continuous.

Part I

Attempt both problems in this section.

- 1. Let X be a topological space and let $\Delta : X \to X \times X$ given by $\Delta(x) = (x, x)$ be the diagonal embedding.
 - a. Prove that if $X \times X$ is equipped with the product topology then Δ is continuous.
 - b. Prove that X is Hausdorff if and only if the image $\Delta(X) \subset X \times X$ is closed.
- 2. Let X and Y be first countable topological spaces
 - a. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence in Y such that $a_n \to a$. Prove that

$$\{a_n \mid n \in \mathbb{N}\} \cup \{a\}$$

is a compact subset of Y.

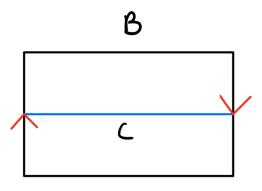
- b. Let $A \subset Y$ and let x be a limit point of A. Prove that there is a sequence $\{a_n\}_{n=1}^{\infty}$ in A so that $a_n \to a$. Hint: This is false if Y is not first countable.
- c. Assume that Y is Hausdorff and let $f : X \to Y$ be a proper function (i.e. $K \subset Y$ compact implies $f^{-1}(K) \subset X$ is compact). Prove that if $C \subset X$ is closed then $f(C) \subset Y$ is closed. Hint: For first countable spaces compactness implies sequential compactness.

Part II

Attempt three of the four problems in this section (mark which ones you are attempting)

- 1. Let X be a path connected and locally path connected space and let $p: \tilde{X} \to X$ be a universal covering.
 - a. Let $A \subset X$ be a path connected subset, Prove that if A is a path component of $p^{-1}(A)$ then $p' := p|_{\tilde{A}} : \tilde{A} \to A$ is a covering of A.
 - b. Let $q \in A$ and $\tilde{q} \in \tilde{A}$ so that $p'(\tilde{q}) = q$. Prove that $p'_*(\pi_1(\tilde{A}, \tilde{q})) = \ker(\iota_*)$, where $\iota : A \to X$ is the inclusion map.

2. Let K be real projective 2-space and recall that K can be constructed by attaching a disk D to the boundary curve of a Möbius band B (pictured below)



- a. Compute $\pi_1(K)$
- b. Let C be the center curve of the Möbius band and let K' be the space obtained by taking two copies of K and identifying the curve C in both copies. Compute $\pi_1(K')$.
- c. Describe the universal cover of K'.
- 3. Let X be a topological space and let G be a group acting on X via homeomorphisms. Recall that such a group action is a *covering space action* if for each $u \in X$ there is an open neighborhood $U \ni u$ such that if $g_1, g_2 \in G$ and $g_1(U) \cap g_2(U) \neq \emptyset$ then $g_1 = g_2$.
 - a. Let $X = \mathbb{R}^2 \setminus \{(0,0)\}$ and let $G = \mathbb{Z}$ and let G act on X so that the generator $1 \in \mathbb{Z}$ acts via $1 \cdot (x, y) = (2x, 2y)$. Prove that this is a covering space action.
 - b. Prove that if we let $X = \mathbb{R}^2$ and we extend the action of G using the same formula as in part a. then the action is no longer a covering space action.
 - c. Let Y the space of orbits of the action from part a. and let $p: X \to Y$ be the map that takes a point in X to its orbit. What is $\pi_1(Y)$?
- 4. Recall that a topological space X is *contractible* if the identity map $1_X : X \to X$ is homotopic to a constant map.
 - a. Show that every contractible space is path connected.
 - b. Suppose that if X is contractible and Y is path connected. Prove that if $f_1, f_2 : X \to Y$ are maps then f_1 and f_2 are homotopic maps.
 - c. Find a counterexample to b. if we drop the hypothesis that Y is path connected.