Topology Qualifying Exam

Make sure you explicitly mention any theorems you use and explain why the relevant hypotheses are satisfied. Unless otherwise stated, all functions are assumed to be continuous.

Part I

Attempt both problems in this section.

1. Let $X = [-1, 1] \subseteq \mathbb{R}$. For a < 0 < b consider the subsets

$$L_b = [-1, b), \quad R_a = (a, 1], \quad U_{a,b} = (a, b).$$

Consider the topology on X generated by the basis $\mathcal{B} = \{L_b, R_a, U_{a,b} \mid a < 0 < b\}$. Answer the following questions, providing proofs or counterexamples as appropriate.

a. Is the following function $f: X \to X$ continuous?

$$f(x) = \begin{cases} 1 & x \ge 0\\ -1 & x < 0 \end{cases}$$

b. Is the following sequence convergent?

$$t_n = \begin{cases} 0 & n \text{ even} \\ \frac{1}{2} & n \text{ odd} \end{cases}$$

- c. Show that X compact but not Hausdorff.
- 2. Give \mathbb{N} the discrete topology and let $X = \mathbb{N} \cup \{\infty\}$ be the one-point compactification of \mathbb{N} . Let Y be a topological space and let $f : \mathbb{N} \to Y$. This function naturally gives rise to a sequence $\{f(n)\}_{n \in \mathbb{N}}$ in Y.

Prove that the above sequence converges if and only if f can be continuously extended to $\hat{f}: X \to Y$.

Part II

Attempt three of the four problems in this section (mark which ones you are attempting)

- 1. Let X be a path connected and locally path connected space and let $p: \tilde{X} \to X$ be a universal covering.
 - a. Let $A \subset X$ be a path connected subset, Prove that if \tilde{A} is a path component of $p^{-1}(A)$ then $p' := p|_{\tilde{A}} : \tilde{A} \to A$ is a covering of A.
 - b. Let $q \in A$ and $\tilde{q} \in \tilde{A}$ so that $p'(\tilde{q}) = q$. Prove that $p'_*(\pi_1(\tilde{A}, \tilde{q})) = \ker(\iota_*)$, where $\iota : A \to X$ is the inclusion map.

2. Let $X = S^1 * S^1$ be a wedge of two circles with wedge point q. $\pi_1(X, 1)$ is generated by the homotopy classes of the curves α and β (see figure below).

- a. Find a 4 sheeted **irregular**¹ cover \tilde{X} of X
- b. Let $p: \tilde{X} \to X$ be the covering map to the cover you constructed in a. Let q be the wedge point of X and pick a lift \tilde{q} of q in your cover \tilde{X} . Write down a generating set (with respect to $[\alpha]$ and $[\beta]$) for the subgroup $p_*(\pi_1(\tilde{X}, \tilde{q})) \subset \pi_1(X, q)$.
- c. Find a 4 sheeted **regular** cover \tilde{Y} of X.
- d. Let $f: \tilde{Y} \to X$ be the covering map to the cover you constructed in c. Let q be the wedge point of X and pick a lift \tilde{q} of q in your cover \tilde{Y} . What is the quotient group $\pi_1(X, q)/f_*(\pi_1(\tilde{Y}, \tilde{q}))$

¹Note that regular (resp. irregular) covers are sometimes called normal (resp. non-normal)

3. The figure below shows a graphs G (purple) embedded in a torus T.

- a. Draw a collection of curves based at p whose homotopy classes generate $\pi_1(G, p)$
- b. Let $\iota: G \to T$ be the inclusion map. Prove that $\iota_*: \pi_1(G, p) \to \pi_1(T, p)$ is a surjection.
- c. Write down a set of curves whose homotopy classes normally generate the subgroup ker $\iota_* \subset \pi_1(G, p)$.
- 4. The van-Kampen theorem says that if X is a topological space and U and V are open subsets of X with path connected intersection such that $U \cup V = X$ then for any $p \in U \cap V \pi_1(X, p) \cong (\pi_1(U, p) * \pi_1(V, p))/N$, for some subgroup N.
 - a. Prove that the hypotheses of the theorem cannot be weakened to allow $U \cap V$ to be non path connected
 - b. Prove that the hypotheses of the theorem cannot be weakened to allow U or V to be non open.