TOPOLOGY QUALIFYING EXAM May 2008

PART I.

Do any two of the following:

1. (a) Prove that a topological space X is Hausdorff if and only if the subset $D = \{(x, x) \in X \times X | x \in X\}$ is closed in $X \times X$ (in the product topology).

(b) Let X be a Hausdorff space and let $f: X \to X$ be a continuous function. Prove that $F = \{x \in X \mid f(x) = x\}$ is closed in X.

2. (a) Give an example to show that the projection map $p: X \times Y \to Y$ need not be a closed map. (Hint: Try $X = Y = \mathbf{R}$).

(b)Let X be compact and Y be Hausdorff. Show that the projection $p: X \times Y \to Y$ is a closed map.

(Hint: If A is closed in $X \times Y$ and $y \in Y - p(A)$, start by constructing a cover of $p^{-1}(y)$ by basic open sets in $X \times Y - A$).

3. Let $p: X \to Y$ be a quotient map and $h: X \to Z$ a continuous map such that for each $y \in Y$, h is constant on $p^{-1}(y)$. Show that there is a continuous map $k: Y \to Z$ such that $h = k \cdot p$.

PART II.

Do any four of the following:

1. Determine which of the four spaces (i), (ii), (iii) (iv) are homotopy equivalent. (Give detailed arguments).

- (i) A =torus with a small disk removed
- (ii) B = 2-sphere together with an arc connecting the North pole to the South pole.
- (iii) C = torus
- (iv) D = Moebius band with a small disk removed.

2. Denote by m_i a Moebiusband and by c_i its boundary curve (i = 1, 2). Let X be the quotient space obtained from m_1 and m_2 by identifying c_1 and c_2 by a homeomorphism and let x_0 be a point on $c = c_1 = c_2 \subset X$.

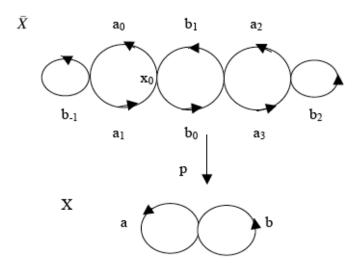
(a) Obtain a presentation of $\pi_1(X, x_0)$.

(b) Does there exist a retraction $r: X \to c$? (Either describe such a retraction or give a detailed proof that no such retraction exist).

3. Let $X = S^1 \cup_f D^2$ be the adjunction space, where $f : Bd(D^2) = S^1 \to S^1$ is the map $f(z) = z^3$.

- (a) Compute $\pi_1(X)$.
- (b) Describe the universal covering space \tilde{X} of X.
- (c) What is the group G of Decktransformations and how does G act on \tilde{X} ?

4. Consider the following covering space $p: \tilde{X} \to X$ of the wedge X of two circles, where the 1-cells labeled a_i, b_j are the lifts of the 1-cells labeled a and b, resp.



Let A = [a] and B = [b] be generators of $\pi(X, v)$, where v is the wedge point.

(a) Give a presentation of the group $p_*\pi(\tilde{X}, x_0)$ as a subgroup of $\pi(X, v)$.

(b) Give a presentation (in terms of generators and relations) for the group G of Deck transformations of \tilde{X} .

5. Represent $\mathbf{Z} * \mathbf{Z} = \langle a, b \rangle$ as the fundamental group of $X = S^1 \vee S^1$ with wedge point x_0 .

Let \tilde{X} be the covering space of X corresponding to the smallest normal subgroup H of $\pi(X, x_0)$ that contains the elements $aba^{-1}b^{-1}$, a^2 and b^2 .

(a) Give a presentation of the Deck transformation group G.

What is the cardinality of the fiber over x_0 ?

(b) Draw a picture of \tilde{X} , labeling clearly the (directed) edges that cover the edges of X corresponding to a and b.