1* (bonus problem). Let S_d denote the polynomials in of $k[x_0, \ldots, x_n]$ that are k-linear combinations of monomials of degree d. Prove that an ideal a of $k[x_0, \ldots, x_n]$ is homogeneous (i.e., generated by homogeneous polynomials) if and only if $a = \sum d a \cap S_d$.

Sketch of proof: The “only if” part is easy: just pick generators for a; then their degree d pieces for various d’s give homogeneous generators for a. We now prove the “if” part. Let g_1, \ldots, g_r be homogeneous generators for a. Let $f \in a$ have degree m. Then for some a_1, \ldots, a_r in $k[x_0, \ldots, x_n]$, we have $f = \sum_{i=1}^r a_i g_i$. Recall that if g is a polynomial, then g_d denotes the sum of the monomials of degree d in g. Considering degrees and the fact that each g_i is a sum of monomials of the same degree (which may depend on i), we see that that $f_m = \sum_{i=1}^r (a_i)_{m-\deg g_i} g_i$. This shows that $f_m \in a$. Now replace f by $f - f_m$, which has degree less than m, and use induction on m.
