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Algebraic Geometry
Lectures 11 and 12
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Scribe: J. Kyle Armstrong

Recall: If Y is a variety we a sheaf of regular functions O(U). If p€ Y
we had a local ring O, > (U 3 p, f) if Y is affine we have that O(Y) D
A(Y) = klxy, 22, .., 2] /1Y) and A(Y ), = O,

1.1 Morphisms

1.1.1 Varieties

Suppose Y is a variety. Consider functions F' which are regular on some
open subset (depending on f). These are pairs (U, f) such that U C Y is
open and nonempty and f is regular on U. We say that (U, f) ~ (V, f) if
f=gonUNV.

Definition 1.1.1. Denote the set of such equivalence classes by K(Y'). Since
the intersection of any two nonempty open subsets in Y is an open nonempty
subset we can make K(Y') into a ring.

Example 1.1.2. (U, f) + (V.g) = (UNV, f+g) and (U, f) - (V, ) = (U N
V,f - g) But now we can also invert. If f # 0 is regular on U then 3 is

regularon V. =UN (Y \ {f #0}) # 0 and so (U, f)~! = (V, %)

el

Definition 1.1.3. K(Y) is a field, called the function field of Y.
Remark 1.1.4. If Y is a variety and p € Y then there are natural inclusions.

oY) 0, —Ky
fe V)
U, f) — U )

These 3 objects depend only on the isomorphism class of Y, thus they are
invariants of Y

Theorem 1.1.5. Let Y C A" be an affine variety then:

1. O(Y) 2 A(Y)



2. We have a one to one correspondence
{ points of Y} < { mazximal ideals of A(Y)}

p = my={feAl)f(p)=0}

3. Vp Op 2 A(Y ),
4. K(Y) is the quotient field of A(Y).

Proof. (3) is done by previous result.

(2) A point in A" is a minimal irreducible algebraic set. So points in A" «
maximal ideals of k[x1,x9,...,2,] (Under X — I(X)). Irreducible sets go
to I(X). If Y C A" is an algebraic set then points in Y « maximal ideals
of klz1,x2,...,z,] that contain T(Y). (maximal ideals of A(Y") )

(3) Any element f in the quotient field of A(Y) is regular on some nonempty
open U C Y map this to (U, f) in K(Y). Conversely, any element of K (Y) is
regular at some point p € Y so it is in Op, i.e. in A(Y)m, which is contained
in the quotient field of A(Y).

( geA(Y) with  f e A(Y), gGmp)

(1) Notice A(Y) C O(Y) (showed previously)

oY) = ﬂ o =part c m A(Y )m, = A(Y)
peY peEY

By the exercise and below and part (2) above the proof will be complete.
[

Exercise If B is a domain then B is the intersection (contained in its
quotient field) of the localizations of B at all maximal ideals of B.

1.1.2 Projective Varieties

Proposition 1.1.6. Vi = 0,1,...,n let u; = {x; # 0} C R™. The map

@i u—A" via [xo 2y -t wy) e (22,2000, 20 ) s an isomorphism of
1 1 1

varieties.

Proof. We checked that this is a homeomorphism. The regular functions
correspond by homogenization and de-homogenization. B
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Remark 1.1.7. O,

Theorem 1.1.8. Let Y be a projective variety in P" then:

(a) OY) =k

(c¢) K(Y) = set of elements in the quotient field of k[z1,...,x,]/I(Y) that
are ratios of homogeneous polynomials of some degree.

Proof. (c) follows from 1.1.6
(a) see [Hartshore| B

Remark 1.1.9. (a) in 1.1.8 is the analog of the only holomorphic functions
on C (bounded) on a compact Riemann surface are constants.

Remark 1.1.10. we have a map:

Affine varieties — Rings
YCA" — AY)=Fkz,...,z,]/1(Y)

klx1,...,zy] is finitely generated over k. image C finitely generated
domain over k. Conversely, suppose B is a finitely generated domain over k.
Suppose there are n generators then ¢ : k[xy,...,2z,]—B then kerp = a
is a prime ideal. Take Y = Z(a) C A" then I(Y) = I(Z(a)) = a thus,
AY) =klz1,...,z,)/I(Y) = k[z1,...,25]/a = B

Now we have a 1-1 correspondence:

Affine varieties < finietly generated domains over k

Proposition 1.1.11. Let X,Y be Affine varieties, then 3 1-1 correspon-
dence
{morphisms X—Y} <« {homomorphisms of k algebras A(Y)—A(X)}
o = (f—=fe)

Proof. See [Hartshore| H

Definition 1.1.12. If ¢ : X—Y is a morphism of affine varieties then define
©* 1 A(Y)—A(X) as ¢*(f) = fp called pullbacks of ¢

Example 1.1.13. Consider ¢ : A'—=Y = {y = 2%} C A? via 2 — (z,2?)
then
A(X) = klx] and A(Y) = k[z,y]/(y —2?) 2 X, Y



Where X = z—coordinate on Y — X on X and Y = y—coordinate on
Y — 22 on X

What is p* 7 o*(Z% + 27) = 2% + 222 = 322

How do we recover ¢ ? ¢ : A'—=A? via z +— z coordinate = z, y
coordinate = 22 i.e. (z,1?)

Corollary 1.1.14. We have an “arrow reversing” equivalence of categories:

{affine varieties over k} «— { finitely generated domains over k}
X = A(X) i



Chapter 2

Schemes

2.1 Schemes

2.1.1 Motivation

Motivation for going from varieties to schemes (for a different motivation
see [Danilov]).

In 1.1.14 we restricted to irreducible affine algebraic sets. Non irreducible
sets are also important however.

Example 2.1.1. The intersection of two irreducible sets need not be irre-
ducible. For k = C take Y7 := y = 2? and Y3 := y = 4 then Y1 N Y, =
{(=2,4),(2,4)} C A? which is closed and is NOT reducible.

For a general affine algebraic set X C A" we still have A(X) = k[z1, x2, ...

Definition 2.1.2. An element r in a ring R is nilpotent if ™ = 0 for some
n € N.

Then A(X) has no non-zero nilpotent elements.

In fact if a is an ideal of a ring R then:

ais radical <= R/a has no non-zero nilpotents
< VzeR (z+a)"=0+a thenzx+a=0+a
< VzeR z2"€ca
= rea

Definition 2.1.3. A ring R is reduced if it has no non-zero nilpotent
elements

Remark 2.1.4. domain implies reduced

5

] [ 1(X)
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So A(X) is a finitely generated reduced k—algebra. Conversely, if B is
a finitely generated reduced k—algebra then 3 k[zq,...,z,] — B call it’s
kernel a then a is radical and Y = Z(a) satisfies I(Y) = a so

{affine algebraic sets over k} < {finitely generated reduced k — algebras}

But restricting to reduced rings is not enough.

Example 2.1.5. Consider the family {y* =z , 2 = ¢} C AZ depending on
c € C if ¢ # 0 3 two solutions to y? = ¢ this corresponds to the coordinate
ring k[z,y]/(y?> —x , v —c) 2 k[y]/(y* — ¢). If ¢ = 0 there is only one point.
This corresponds to the coordinate ring k[z,y]/(v* — x , x) = k[y]/(y?) In
the latter the image 7 of y satisfies (7)2 =0

“As ¢—0 the two points get ‘closer’ in the limit, we get a double point
and the ring k[y]/(y?) remember this.”

This example shoes we want to include non-reduced rings as well.

Also why restrict to k being algebraically closed?

Example 2.1.6. We may be interested in integer solutions to y? = 2% —

z. (1,0) is an integral point on it which is needed in number theory.
Grothendieck: In 1-1 correspondence

{affine varieties } < { finitely generated domains over k}
Y — AY)

Replace right hand side by any ring R and define a “geometric object”
on the left hand side ( called SpecR) and get an equivalence of categories.

2.1.2 First attempt
Recall that if Y is an affine variety then
{points of Y} < {maximal ideals of A(Y")}

P o= {feAlY)| flp)=0}

Thus if R is a ring define geometric object associated to it as Specu R = {
maximal ideals of R}
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What about a topology on SpecnR 7 If Y = A™ and a C k[xy,...,z),]
then

Z(@) = {peA™| f(p)=0V fea}
= {peA” | fem,V fea}

= {peA” pcaCm,}

So if R is a ring and a is an ideal define
Z(a) = {maximalidealsmsuchthata C m}

It is an easy check to verify that this forms a topology, taking closed sets as
Z(a) for some ideal a gives a topology.

If R = A(Y') for some affine variety Y then SpecqR =Y with the Zariski
topology.

But still there is a problem. Let X and Y be affine varieties and 1 :
A(X) < A(Y) be a homomorphism of rings, then ¢ ~! :Specy A(X)—Specn A(Y)
via m +— =1 (m)

Fact: ¢~!(m) is a maximal ideal.
This is precisely the map X—Y that is induced by Y

If g € A(Y) is in m;, then 9(g) € I(p) and I(p) = mp. Thus m,,) C
=t (my)

Lemma 2.1.7. If A and B are finitely generated domains over k, ¢ : A—B
is a homomorphism, and b is a maximal ideal in B then ¢~1(b) is a mazimal
ideal. Thus ¢~ (m) is a mazimal in definition of ™" and myy = 1~ (my)

Remark 2.1.8. If R and S are rings and ¢ : R—S is a homomorphism we
want to define SpecynS — Specy R via m — ¢~ !(m) but ¢ ~!(m) need not be
maximal!

Example 2.1.9. ¢ : Z—Q by ¢ ~1(0) = (0) which is not maximal.
But observe pull backs of prime ideal are prime.

Proof. Indeed, if P C S is prime a,b € R such that ab € ¢~ !(P) then
w(ab) = p(a)p(b) € P since P is prime we have either ¢(a) € P or ¢(b) € P
thusa € o1 (P)orbec o (P) R

Instead of Specy R consider SpecR = { prime ideals of R}

Definition 2.1.10. For an ideal a define V' (a) = Z(a) = { prime ideals that
contain a}
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