Lecture 4

Suchandan Pal

December 1, 2008

Recall: functor of points.

If K is a field and $a \subset k[x_1, ..., x_n]$ is an ideal then if $k \subset L$, L a field. Given $f_1, ..., f_n \in k[x_1, ..., x_n]$ we can ask for the zero in L^n . the solutions to a over L are in bijection with the k-algebra homomorphisms $k[x_1, ..., x_n] \to L$, $x_i \to a_i$.

k-algebra homomorphisms are morphisms of schemes.

$$\operatorname{Spec} k[x_1, \dots, x_n]/a \leftarrow \operatorname{Spec} L$$

In particular, take $L=\bar{k}$ and letting $X=Z(a)\subseteq A^n_{\bar{k}}$ we get $X=\hom_{sch(k)}(\bar{k},\operatorname{Spec} A(X))$. So we can recover X from it's "associated scheme" $\operatorname{Spec} A(x)$. This is a better way of thinking of a variety as a scheme. Also, $\operatorname{Spec} A(x)$ carries more information than X. We can also recover solutions over any field extension of k. This might explain the terminology "scheme". It motivates the following definition:

If X is a scheme over some field k, and L is an extension field, then define:

$$X(L) := \hom_{Sch(k)}(L, X)$$

called the set of L valued points of X.

More generally, if X, Y are schemes on a scheme S(base).

Remark: We should distinguish this (even when L=k) from the points of the scheme.

Remark: If R is a ring then there exists a unique ring homomorphism $\mathbb{Z} \Rightarrow R$. Spec $Z \Leftarrow \operatorname{Spec} R$. More generally one can show that any scheme has a unique map to $\operatorname{Spec} Z$. So $\operatorname{Spec} \mathbb{Z}$ is a kind of universal base. Hartshorne 2.2.*?

If X,Y are schemes over a scheme S (base) then we define $X(y) := \hom_{sch(s)}(Y,X)$. These are called the set of Y-valued points. of X.

Example: If E is $y^2 = x^3 - x$ the elliptic curve defined over \mathbb{Q} then $E(\mathbb{Q}) = \{(x,y) \in \mathbb{Q}^2 | (x,y) \in E\}$. Rational solutions.

Vista: This gives a functor associated to X denoted $h_x : \operatorname{Sch}(s) \to Sets$. $x \mapsto \operatorname{hom}_{\operatorname{Sch} s}(Y, X)$. So there is a functor from $\operatorname{Sch}(s) \to Functors$ from $\operatorname{Sch}(s)$ to sets. $x \mapsto \operatorname{hom}_{\operatorname{Sch}(s)}(., x)$.

Remark: A functor of the form h_x is called a representable functor.

This gives an equivalence of Sch(s) with a full subcategory of the caretgory of functors from Sch(s) to sets.

Point: Many geometrical constructions, i.e. tangent space, can be carried out using functors. See "Geometry of Schemes".

Fibered product:

Section 2.3

Recall: If C is a category and $X, Y \in \text{Obj}(C)$ then the product $X \times Y$ in C is an object that satisfies a certain universal property.

i.e. C is sets, $X \times Y$ is the cartesian product. We want to consider products of algebraic sets/schemes and the same over a fixed base.

Definition 0.1. The fibered product.

If $S \in \mathrm{Obj}(C)$ the fibered products in C/S := Category of objects over S.

if x, y is an S-object $X \times Y$ with maps $\phi_1: X \times_s Y \to X, \phi_2: X \times_S Y \to Y.$

Remark: If C has a terminal object S then the fibered product over S is the product.

A (fibered) product is unique up to unique isomorphism.

What should be products of algebraic sets? 1st idea: If X,Y are affine varieties, $X\subseteq \mathbb{A}^n,Y\subseteq \mathbb{A}^m$ then $X\times Y\subseteq \mathbb{A}^{m+n}$

We need to check that the Zariski topology is respected.

The same does not work for projective space because the number of coordinates don't match up: $\mathbb{P}^n \times \mathbb{P}^m \ncong \mathbb{P}^{m+n}$

What does work: Serge embedding.

Suppose X, Y are affine varieties over a field k and $X \times_k Y$ exists, then There is a correspondence with varieties and finitely generated domains over k.

Is there a universal object in the category of finitely generated domains over k which has this unversal property satisfied by $A(X \times_k Y)$. Answer: Yes. $A(X) \otimes A(Y)$. In general in the category of modules over a fing R there is a fibered product, the tensor product denoted $M \otimes_R N$

First: Tensor products of modules.

Let M, N be modules over a ring R.

Definition 0.2. A map $\phi: M \times N \to L$ where L is an R-module, is said to be R-billinear if: $\phi(a+b,c) = \phi(a,c) + \phi(b,c)$ $\phi(a,b+c) = \phi(a,b) + \phi(a,c)$ $\phi(ra,b) = \phi(a,rb)$

We want a universal object for such maps, i.e. an object $M\square_R N$ with a map $\psi: M \times N \to M\square_R N$ which fits into the following commutative diagram:

So {R-bilinear maps $M \times N \to L$ } \leftrightarrow { R-module homomorphisms $M \square_R N \to L$

Idea to construct $M \square N$:

Consider all pairs (m, n) and force the conditions.

Definition 0.3. We will call $M \square_R NM \otimes_R N$, or the tensor product of M and N over R. If the ring R is clear from context we may omit R. The tensor product $M \otimes N$ is the quotient of the free abelian group $M \times N$ by the subgroup generated by

$$(a+b,c) = (a,c) + (b,c)$$

 $(a,b+c) = (a,b) + (a,c)$

The image of (m,n) is denoted $m \otimes n$. $M \otimes N$ is an R-module via $r(m \otimes n) = (rm) \otimes n = m \otimes (rn)$.

Let R be a subring of a ring S. (Then S is an R-module in a natural way.) $S \otimes_R R$ is an S-module via

$$s\left(\sum_{i=1}^{k} s_i \otimes r_i\right) = \sum_{i=1}^{k} s s_i \otimes r_i$$

Lemma 0.4. The map $S \otimes_R R \to S$ is well defined and is an isomorphism of S-modules.

$$s \otimes r \rightarrow rs$$

Proof. Consider the map $\Theta: S \times R \to S$, $(s,r) \mapsto sr$. This is R-billinear. This gives the map $S \otimes_R R \to S$ above.

Consider the map $\phi: S \to S \otimes_R R$, $s \mapsto s \otimes 1$.

Then:

$$(\phi \circ \Theta)(\sum_{i=1}^k s_i \otimes r_i) = \phi(\sum_{i=1}^k s_i r_i) = \left(\sum_{i=1}^k s_i r_i\right) \otimes 1 = \sum_{i=1}^k s_i \otimes r_i$$

 $(\Theta \circ \phi)(s) = \Theta(s \otimes 1) = s$. So this completes the lemma.

Corollary of HW: If R is a subring of a ring S then $R^n \otimes_R S \cong (R \otimes_R S)^n \cong S^n$ via $(r_1, \ldots, r_n) \otimes s \mapsto (r_1 \otimes s, \ldots, r_n \otimes s) \mapsto (r_1 s, \ldots, r_n s)$

Eg. If d is a field and V is a vector space over k and L is a field containing k then $V \cong k^n$, $V \otimes_k L \cong L^n$. The n dimentional vectorspace over L. If v_1, \ldots, v_n is a basis for V over k then $v_1 \otimes 1, \ldots, v_n \otimes 1$ is a basis for $V \otimes_k L$ over L. This operation is called changing the base of V from k to L.

Definition 0.5. If A, B are algebras over R (a ring) then in particular they are modules over R. Then $A \otimes_R B$ is an R-module and can be made into an R-algebra via $(a \otimes b)(a' \otimes b') = (aa') \otimes (bb')$ and extending this definition R-linearly.

Claim: This is well defined:

Proof. (sketch): We want a map $A \otimes B \times A \times B \to A \otimes B$. Consider $A \times B \times A \times B \to A \otimes B$, a, b, a', b' \mapsto $(aa') \otimes (bb')$. Check: This is R-billinear. Therefore we get a map: $(A \otimes B) \otimes (A \otimes B) \to A \otimes B$. We know that this comes from:

 $(A \otimes B) \times (A \otimes B) \to A \otimes B$ which takes $(a \otimes b, a' \otimes b') \mapsto aa' \otimes bb'$

Fact: $A \otimes_R B$ with maps $A \to A \otimes B$, $a \mapsto a \otimes 1$ and $B \to A \otimes B$,

 $b\mapsto 1\otimes b$ satisfies the universal property:

Also the fibered product exists for affine schemes. Spec $A \otimes \operatorname{Spec} B = \operatorname{Spec}(A \otimes_R B)$ eg.

We know that $\mathbb{A}^n_k \leftrightarrow \operatorname{Spec} k[x_1,\ldots,x_n]$. What is $\mathbb{A}^n_k \times \mathbb{A}^m_k$ as a scheme. $\mathbb{A}^n_k \times \mathbb{A}^m_k \leftrightarrow \operatorname{Spec}[x_1,\ldots,x_n,y_1,\ldots,y_m] \leftrightarrow \mathbb{A}^{m+n}_k$ Warning: The Zariski topology on \mathbb{A}^{n+m} is not the product topol-

Warning: The Zariski topology on \mathbb{A}^{n+m} is not the product topology. For general schemes we glue the constructions above. Thm 3.3 in Hartshorne. For any two schemes x,y over a base S the fibered product $X\times_S Y$ exists.