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Recall: functor of points.
If K is a field and a C k[x1, ..., x,] is an ideal then if £ C L, L a field. Given
fi,.es fn € klz1,...,2,]) we can ask for the zero in L™. the solutions to a
over L are in bijection with the k-algebra homomorphisms k[z1, ..., z,] — L,
Ty — Qj.

k-algebra homomorphisms are morphisms of schemes.
Speck[x1,...,xy]/a «— Spec L

In particular, take L = k and letting X = Z(a) C A7 we get X =
hom,j, (1) (k, Spec A(X)). So we can recover X from it’s “associated scheme”
Spec A(x). This is a better way of thinking of a variety as a scheme. Also,
Spec A(x) carries more information than X. We can also recover solutions
over any field extension of k. This might explain the terminology “scheme”.
It motivates the following definition:

If X is a scheme over some field k, and L is an extension field, then
define:

X (L) := homgey k) (L, X)

called the set of L wvalued points of X.

More generally, if X,Y are schemes on a scheme S(base).

Remark: We should distinguish this (even when L = k) from the points
of the scheme.

Remark: If R is a ring then there exists a unique ring homomorphism
7Z = R. Spec Z < Spec R. More generally one can show that any scheme has
a unique map to Spec Z. So SpecZ is a kind of universal base. Hartshorne
2.2.%7

If X,Y are schemes over a scheme S (base) then we define X(y) :=
homyj(s) (Y, X). These are called the set of Y-valued points. of X.



Example: If E is y?> = 2% — x the elliptic curve defined over Q then
E(Q) = {(z,y) € Q?|(x,y) € E}. Rational solutions.

Vista: This gives a functor associated to X denoted h, : Sch(s)—Sets.
x +— homge (Y, X). So there is a functor from Sch(s)— Functors from
Sch(s) to sets. x +— homge (s (-, ).

Remark: A functor of the form h, is called a representable functor.

This gives an equivalence of Sch(s) with a full subcategory of the caret-
gory of functors from Sch(s) to sets.

Point: Many geometrical constructions, i.e. tangent space, can be car-
ried out using functors. See “Geometry of Schemes”.

Fibered product:

Section 2.3

Recall : If C is a category and X,Y € Obj(C) then the product X x Y
in C is an object that satisfies a certain universal property.

i.e. C is sets, X x Y is the cartesian product. We want to consider
products of algebraic sets/schemes and the same over a fixed base.

Definition 0.1. The fibered product.
If S € Obj(C) the fibered products in C/S := Category of objects over

S.
if z,y is an S-object X xY with maps ¢1 : X X, Y — X, ¢ : X XgY —
Y.
Z
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Remark: If C' has a terminal object S then the fibered product over S
is the product.

A (fibered) product is unique up to unique isomorphism.

What should be products of algebraic sets? 1st idea: If X,Y are affine
varieties, X C A™.Y C A™ then X x Y C A"

We need to check that the Zariski topology is respected.

The same does not work for projective space because the number of
coordinates don’t match up: P" x P 2 Pm+tn

What does work: Serge embedding.

Suppose X, Y are affine varieties over a field £ and X xj Y exists, then
There is a correspondence with varieties and finitely generated domains over

N
™

>~<

S

peck

A(Z)

(XLN
N
\

/

Is there a universal object in the category of finitely generated domains
over k which has this unversal property satisfied by A(X x; Y). Answer:
Yes. A(X) ® A(Y). In general in the category of modules over a fing R
there is a fibered product, the tensor product denoted M ®r N

First: Tensor products of modules.

Let M, N be modules over a ring R.



Definition 0.2. A map ¢ : M x N — L where L is an R-module, is said to
be R-billinear if: ¢(a + b, c) = ¢(a,c) + ¢(b, c)

¢<a7 b+ C) = ¢<a7 b) + ¢(a7 C)

o(ra,b) = ¢(a,rb)

We want a universal object for such maps, i.e. an object MUOgrN with
amap ¢ : M x N — MUOgN which fits into the following commutative
diagram:

M x N
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So {R-bilinear maps M x N — L } < { R-module homomorphisms
MORN — L

Idea to construct MLIN:

Consider all pairs (m,n) and force the conditions.

Definition 0.3. We will call MOrNM ®g N, or the tensor product of M
and N over R. If the ring R is clear from context we may omit R. The
tensor product M ® N is the quotient of the free abelian group M x N by
the subgroup generated by

(a+b,¢c) = (a,c)+ (b,c)
(a,b+c¢) = (a,b) + (a,c)

The image of (m,n) is denoted m ® n. M ® N is an R-module via
rim®mn)=(rm)®@n=m® (rn).

Let R be a subring of a ring S. (Then S is an R-module in a natural
way.) S ®@gr R is an S-module via

k k
S <ZS7,®T1> :ZSSi(X)Ti

i=1 =1

Lemma 0.4. The map S ®gr R — S is well defined and is an isomorphism
of S-modules.
S®r —rs

Proof. Consider the map © : S x R — S, (s,r) + sr . This is R-billinear.
This gives the map S ®r R — S above.
Consider the map ¢ : S — S®r R, s — s® 1.



Then:

k k k k
(¢o @)(Z 5i Qi) = ¢(Z siri) = (Z SiTi> ®1= Zsi ®r;

=1 1=1 i=1 i=1

(@o¢p)(s) =0O(s®1) =s. So this completes the lemma.
O

Corollary of HW: If R is a subring of a ring S then R" ®pr S = (R ®g
S)" =S via (11, ...,rn) @S (M1 ®S,...,ry ®8) — (r18,...,T,5)

Eg. If d is a field and V is a vector space over k and L is a field
containing k then V = k", V ®; L = L™. The n dimentional vectorspace
over L. If vy,...,v, is a basis for V over k then v1 ® 1,...,v, ® 1 is a basis
for V ®; L over L. This operation is called changing the base of V' from k
to L.

Definition 0.5. If A, B are algebras over R (a ring) then in particular they
are modules over R. Then A ®g B is an R-module and can be made into
an R-algebra via (a®b)(a’ @V') = (ad’) ® (bb') and extending this definition
R-linearly.

Claim: This is well defined:

Proof. (sketch): We want a map A® B x A x B — A® B. Consider
AXxBxAxB — A® B, a,b,d,b/) — (ad') ® (bb'). Check: This is R-
billinear. Therefore we get a map: (A® B) ® (A® B) — A® B. We know
that this comes from:

M x N M @g N

N7

L
(A® B) x (A® B) — A® B which takes (a®b,a’ @) — ad’ @ bb' [

Fact: A®r B with maps A - A® B,a—a®1and B - AQ® B,



b — 1 ® b satisfies the universal property:
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Also the fibered product exists for affine schemes. SpecA ® Spec B =
Spec(A ®r B) eg.

We know that A} < Speck[z1,...,x,]. What is A} x A" as a scheme.
AR x AT Spec[T1, ..., Tny Yls- -, Ym) < AP

Warning: The Zariski topology on A" is not the product topol-
ogy. For general schemes we glue the constructions above. Thm 3.3 in
Hartshorne. For any two schemes x,y over a base S the fibered product
X XgY exists.
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