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1 Varieties
Proposition 1.1. (a) If X andY are algebraic sets in A", then so is XUY

(b) If I is a set and Vi € I, X; is an algebraic set in A", then (\,c; X; is
an algebraic set.

(c) ¢ and A" are algebraic sets.

Proof. (a) Let X = Z(T}) and Y = Z(13), where T; and T3 are subsets in
k’[l’l, Ce ,.’L‘n]. Then XUY = Z(TlTQ) = {f1f2|f1 € Tl, f2 € TQ} whence
X UY is an algebraic set.

(b) Let X; = Z(T;) Vi € I. Then (N;e; X; = Z(U,e; Th)-

(c) Note that ¢ = Z(1) and A" = Z(0).
U

So the algebraic sets are the closed sets of a topology, called the Zarisk:
topology. In other words, in the Zariski topology on A", the closed sets are
precisely the algebraic subsets.

Example 1.2. The complement of y = 22 in A" is open. Thus we see that
open sets are big!



Example 1.3. Consider the Zariski topology on A'. Note that k[x,] = k[z]
is a PID. So the algebraic sets are of the form Z(f) for some f(z) € k[z]. If
flz) =clzr —ay) - (x — a,), then Z(f) = {(a1, -, (a,)} which is a finite
set of points unless n = 0. If n = 0, then
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Conversely, if a1,...,a, € k with n > 1 then {(a1),...,(an)} = Z((z —
a1),...,(x —a,)). Also, as shown earlier, ¢ = Z(1) and A" = Z(0). Thus
the closed sets of A! are either ¢, A" or a finite se of points. In particular,
the topology is not Hausdorff.

Now let Y C A" be a subset (not necessarily algebraic). If f(Z) € k[Z]
such that f(@) =0V d €Y then fg=0onY for any g € k[Z]. Alsoif f =0
and g =0 on Y then f+g=0onY. Thus {f € k[Z]|f =0 on Y} is an
ideal of k[Z]. It is denoted by I(Y") and is called the ideal of Y.

Proposition 1.4. (a) If Ty C Ty are subsets of k|Z] then Z(T1) 2 Z(Ts).
(b) If Y1 CYs are subsets of A™ then 1(Y1) D I(Y3).
Proof. Homework. O

Now if a is an ideal of k[Z], then a natural question to ask is : how is
I(Z(a)) related to a? Certainly a C I(Z(a)). Does the reverse inclusion hold
as well?

Example 1.5. Let a = (2™) C k[z] for some n > 1. Then Z(a) = {(0)}.
Now observe that x € I(Z(a) but x ¢ a.

Thus 1(Z(a)) < 2.

Definition 1.6. If a is an ideal in a ring A then the radical of a is defined

as
Vva={a€e Ala" € a;n > 1}

An ideal a is said to be a radical ideal if a = \/a.

(HW): Show that for any ideal a, y/a is an ideal and is a radical ideal.



Remark 1.7. V ideals a, a C /a.
If a is an ideal in k[Z], then v/a C I(Z(a)).

Theorem 1.8. (Hilbert’s Nullstellensatz) Assume k is algebraically closed.
Let a be an ideal of k[Z] and let f € k[Z] such that f = 0 on Z(a). Then
f" € a for somer.

Proof. See textbook. O
Corollary 1.9. If a is an ideal of k[Z] then I(Z(a)) = a

Remark 1.10. The conclusion of Theorem 1.8 need not hold if k is not
algebraically closed.

Example 1.11. Consider k = R, n = 2 and a = (2? +y> + 1) C k[, y].
Then
Z(a) = ¢

and

I(Z(a)) = 1(¢) = klz,y] 2 a
Example 1.12. Consider k =R, n =1, a = (23 — 1) C k[z]. Then

and

I(Z(a)) =(z—1) 2 V(2 = 1) =Va

Proposition 1.13. IfY is any subset of A" then Z(I(Y)) =Y, where Y is
the closure of Y in the Zariski topology.

Corollary 1.14. There is a one-to-one inclusion reversing correspondence:

{radical ideals of k|x1, ..., x,|}—{closed subsets of A"}

given by
a+— Z(a)

and
Y — I(Y)

We now introduce the concept of irreducible sets in A™.
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Consider f(z,y) = 2? — y* € k[z,y] and Z(f) C A% We see that
Z(f) = Zx+y) U Z(z —y)
so that Z(f) is the union two proper algebraic (i.e closed) subsets.

Definition 1.15. A non-empty subset Y of the topological space X is said
to be irreducible if it cannot be expressed as a union of two proper closed
subsets (they need not be disjoint).

Note that the empty set is considered to be not irreducible .
Example 1.16. Z(z? — y?) C A? is not irreducible.

Recall that a topological space X is said to be connected if it cannot be
written as a union of disjoint non-empty open subsets.

Remark 1.17. Consider Y = Z(z* — y*). We claim that Y is connected in
the Zariski topology.

Lemma 1.18. Irreducible = connected

Proof. Suppose Y is not connected i.e 4 non-empty open subsets Uy, Us such
that Uy UUy =Y and U; NU; = ¢. We can then write

Y = (Y\Uy) U (Y\Uy)
O

Irreducibility is not as relevant in the "usual topology” as it is in alge-
braic geometry.

Corollary 1.19. FEvery algebraic set in A™ can be expressed uniquely as a
union of irreducible subsets with not one containing any other.

Proof. See textbook. O

Definition 1.20. An affine algebraic variety is an irreducible closed subset
of A" with the induced (Zariski) topology.

Proposition 1.21. If Y, Y;5 are subsets of A", then

I(Y1UYy) = I(Y1) N I(Y2)



Corollary 1.22. An algebraic setY in A™ is irreducible <= 1(Y") is a prime
ideal.

Proof. (=) Let Y be irreducible and suppose that f, g € I(Y). Then
Y CZ(fg)=Z(f)UZ(g). Thus Y = (Y N Z(f)) U (Y NZ(g)), both being
closed subsets of Y. However, Y is irreducible so that we must have either
Y=YNZ(f) whence Y C Z(f), or Y =Y N Z(g) whence Y C Z(g). Thus
either f € I(Y) or g € I(Y).

(<) Suppose p = I(Y) is prime. Then Y = Z(p) = Z(I1(Y)). Suppose
Z(p) = Y1 UY; with Y1, Vs closed subsets. Then p = I(Z(p)) = [(Y1UY3) =
I(Y1) N I(Ys) whence p = I(Y1) or p = I(Y3). Thus Z(p) = Y or Ys, hence
it is irreducible. U

Example 1.23. A" is irreducible since /(A™) = (0) which is prime

Example 1.24. If f € k[zy,...,x,)] is irreducible then (f) is a prime ideal
and so Z(f) is irreducible. For n = 2, Z(f) is called a curve . For n = 3,
Z(f) is called a surface . For n > 3, Z(f) is called a hypersurface .

HW* A non-empty open subset of an irreducible space is irreducible and
dense.

Non-empty open subsets of an irreducible space carry a lot of information
about the topology.

Definition 1.25. A non-empty open subset of an affine variety is called a
quasi-affine variety .

Lemma 1.26. IfY = Y, UY; with Y1, Y5 connected and Yy NYs # ¢, then
Y is connected.

Proof. Suppose Y is not connected so that 3 open subsets Uy, Uy with Y =
UyUU, and UyNUy = ¢. Consider a point P € (Y;NY3). Then either P € Y}
or P €Y,. WLOG, suppose that P € Y;. Now note that

Yi=YinU)U((Y1NUs)

Since Y] is connected, one of Y; N U; and Y; N Us must be empty. But we
know that P € Y; NU; and so Y; N Us is empty. Thus Y; C U;. Similarly,
Y, C Uy and thus Y C U; whence Uy = ¢. (=<) O

Example 1.27. It immediately follows from the above lemma that Z(x?—y?)
is connected in A? since both Z(x —y) and Z(z +y) are connected (they are
both irreducible).



