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1 Varieties

Proposition 1.1. (a) If X and Y are algebraic sets in An, then so is X∪Y

(b) If I is a set and ∀i ∈ I, Xi is an algebraic set in An, then
⋂
i∈I Xi is

an algebraic set.

(c) φ and An are algebraic sets.

Proof. (a) Let X = Z(T1) and Y = Z(T2), where T1 and T2 are subsets in
k[x1, . . . , xn]. Then X∪Y = Z(T1T2) = {f1f2|f1 ∈ T1, f2 ∈ T2} whence
X ∪ Y is an algebraic set.

(b) Let Xi = Z(Ti) ∀i ∈ I. Then
⋂
i∈I Xi = Z(

⋃
i∈I Ti).

(c) Note that φ = Z(1) and An = Z(0).

So the algebraic sets are the closed sets of a topology, called the Zariski
topology. In other words, in the Zariski topology on An, the closed sets are
precisely the algebraic subsets.

Example 1.2. The complement of y = x2 in An is open. Thus we see that
open sets are big!
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Example 1.3. Consider the Zariski topology on A1. Note that k[x1] = k[x]
is a PID. So the algebraic sets are of the form Z(f) for some f(x) ∈ k[x]. If
f(x) = c(x − a1) · · · (x − an), then Z(f) = {(a1, · · · , (an)} which is a finite
set of points unless n = 0. If n = 0, then

Z(f) =

{
φ if c 6= 0

A
n if c = 0

Conversely, if a1, . . . , an ∈ k with n ≥ 1 then {(a1), . . . , (an)} = Z
(
(x −

a1), . . . , (x − an)
)
. Also, as shown earlier, φ = Z(1) and An = Z(0). Thus

the closed sets of A1 are either φ, An or a finite se of points. In particular,
the topology is not Hausdorff.

Now let Y ⊆ An be a subset (not necessarily algebraic). If f(~x) ∈ k[~x]
such that f(~a) = 0 ∀ ~a ∈ Y then fg = 0 on Y for any g ∈ k[~x]. Also if f = 0
and g = 0 on Y then f + g = 0 on Y . Thus {f ∈ k[~x]|f = 0 on Y } is an
ideal of k[~x]. It is denoted by I(Y ) and is called the ideal of Y .

Proposition 1.4. (a) If T1 ⊆ T2 are subsets of k[~x] then Z(T1) ⊇ Z(T2).

(b) If Y1 ⊆ Y2 are subsets of An then I(Y1) ⊇ I(Y2).

Proof. Homework.

Now if a is an ideal of k[~x], then a natural question to ask is : how is
I(Z(a)) related to a? Certainly a ⊆ I(Z(a)). Does the reverse inclusion hold
as well?

Example 1.5. Let a = (xn) ⊆ k[x] for some n > 1. Then Z(a) = {(0)}.
Now observe that x ∈ I(Z(a) but x 6∈ a.

Thus I(Z(a)) 6⊆ Ω.

Definition 1.6. If a is an ideal in a ring A then the radical of a is defined
as √

a = {a ∈ A|an ∈ a;n ≥ 1}

An ideal a is said to be a radical ideal if a =
√

a.

(HW): Show that for any ideal a,
√

a is an ideal and is a radical ideal.
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Remark 1.7. ∀ ideals a, a ⊆
√

a.
If a is an ideal in k[~x], then

√
a ⊆ I(Z(a)).

Theorem 1.8. (Hilbert’s Nullstellensatz) Assume k is algebraically closed.
Let a be an ideal of k[~x] and let f ∈ k[~x] such that f = 0 on Z(a). Then
f r ∈ a for some r.

Proof. See textbook.

Corollary 1.9. If a is an ideal of k[~x] then I(Z(a)) =
√

a

Remark 1.10. The conclusion of Theorem 1.8 need not hold if k is not
algebraically closed.

Example 1.11. Consider k = R, n = 2 and a = (x2 + y2 + 1) ⊆ k[x, y].
Then

Z(a) = φ

and
I(Z(a)) = I(φ) = k[x, y] 6⊇ a

Example 1.12. Consider k = R, n = 1, a = (x3 − 1) ⊆ k[x]. Then

Z(a) = {(1)} ⊆ A1
R

and
I(Z(a)) = (x− 1) 6⊇

√
(x3 − 1) =

√
a

Proposition 1.13. If Y is any subset of An then Z(I(Y )) = Y , where Y is
the closure of Y in the Zariski topology.

Corollary 1.14. There is a one-to-one inclusion reversing correspondence:

{radical ideals of k[x1, . . . , xn]}←→{closed subsets of An}

given by
a 7−→ Z(a)

and
Y 7−→ I(Y )

We now introduce the concept of irreducible sets in An.
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Consider f(x, y) = x2 − y2 ∈ k[x, y] and Z(f) ⊆ A2. We see that

Z(f) = Z(x+ y) ∪ Z(x− y)

so that Z(f) is the union two proper algebraic (i.e closed) subsets.

Definition 1.15. A non-empty subset Y of the topological space X is said
to be irreducible if it cannot be expressed as a union of two proper closed
subsets (they need not be disjoint).

Note that the empty set is considered to be not irreducible .

Example 1.16. Z(x2 − y2) ⊆ A2 is not irreducible.

Recall that a topological space X is said to be connected if it cannot be
written as a union of disjoint non-empty open subsets.

Remark 1.17. Consider Y = Z(x2 − y2). We claim that Y is connected in
the Zariski topology.

Lemma 1.18. Irreducible =⇒ connected

Proof. Suppose Y is not connected i.e ∃ non-empty open subsets U1, U2 such
that U1 ∪ U2 = Y and U1 ∩ U2 = φ. We can then write

Y = (Y \U1) ∪ (Y \U2)

Irreducibility is not as relevant in the ”usual topology” as it is in alge-
braic geometry.

Corollary 1.19. Every algebraic set in An can be expressed uniquely as a
union of irreducible subsets with not one containing any other.

Proof. See textbook.

Definition 1.20. An affine algebraic variety is an irreducible closed subset
of An with the induced (Zariski) topology.

Proposition 1.21. If Y1, Y2 are subsets of An, then

I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2)
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Corollary 1.22. An algebraic set Y in An is irreducible⇐⇒ I(Y ) is a prime
ideal.

Proof. (=⇒) Let Y be irreducible and suppose that f , g ∈ I(Y ). Then
Y ⊆ Z(fg) = Z(f) ∪ Z(g). Thus Y = (Y ∩ Z(f)) ∪ (Y ∩ Z(g)), both being
closed subsets of Y . However, Y is irreducible so that we must have either
Y = Y ∩ Z(f) whence Y ⊆ Z(f), or Y = Y ∩ Z(g) whence Y ⊆ Z(g). Thus
either f ∈ I(Y ) or g ∈ I(Y ).
(⇐=) Suppose p = I(Y ) is prime. Then Y = Z(p) = Z(I(Y )). Suppose
Z(p) = Y1 ∪ Y2 with Y1, Y2 closed subsets. Then p = I(Z(p)) = I(Y1 ∪ Y2) =
I(Y1) ∩ I(Y2) whence p = I(Y1) or p = I(Y2). Thus Z(p) = Y1 or Y2, hence
it is irreducible.

Example 1.23. An is irreducible since I(An) = (0) which is prime

Example 1.24. If f ∈ k[x1, . . . , xn] is irreducible then (f) is a prime ideal
and so Z(f) is irreducible. For n = 2, Z(f) is called a curve . For n = 3,
Z(f) is called a surface . For n > 3, Z(f) is called a hypersurface .

HW∗ A non-empty open subset of an irreducible space is irreducible and
dense.

Non-empty open subsets of an irreducible space carry a lot of information
about the topology.

Definition 1.25. A non-empty open subset of an affine variety is called a
quasi-affine variety .

Lemma 1.26. If Y = Y1 ∪ Y2 with Y1, Y2 connected and Y1 ∩ Y2 6= φ, then
Y is connected.

Proof. Suppose Y is not connected so that ∃ open subsets U1, U2 with Y =
U1∪U2 and U1∩U2 = φ. Consider a point P ∈ (Y1∩Y2). Then either P ∈ Y1

or P ∈ Y2. WLOG, suppose that P ∈ Y1. Now note that

Y1 = (Y1 ∩ U1) ∪ (Y1 ∩ U2)

Since Y1 is connected, one of Y1 ∩ U1 and Y1 ∩ U2 must be empty. But we
know that P ∈ Y1 ∩ U1 and so Y1 ∩ U2 is empty. Thus Y1 ⊆ U1. Similarly,
Y2 ⊆ U1 and thus Y ⊆ U1 whence U2 = φ. (⇒⇐)

Example 1.27. It immediately follows from the above lemma that Z(x2−y2)
is connected in A2 since both Z(x− y) and Z(x+ y) are connected (they are
both irreducible).
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