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Zeta functions

Part 1: Cohomological approach to the Riemann Hypothesis

ζpsq �
°8

n�1
1
ns�
±

p
1

1�p�s

(converges when Re s ¡ 1, but analytically continued to C)

Conjecture (Riemann Hypothesis 1859)

If ζpsq � 0, then s is a negative even integer or Re s � 1
2 .

Generalization: If R is a commutative ring,

ζRpsq �
¹

mPMaxSpecR

1

1 � |R{m|�s

ζpsq � ζZpsq
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Zeta functions

Theorem (Riemann Hypothesis over a finite field)

If X is a curve over Fq, then ζX psq � 0 implies Re s � 1
2 .

Proof by Grothendieck/Deligne (’70s) after Weil conjectures (’40s):

Construct a Weil cohomology theory for schemes over Fq

Zeros of ζX with Re � i
2 Ø eigenvalues of Frobeniusü H i pX q

Since X is a curve, H i pX q concentrated in i � 0, 1, 2

Deninger (’90s): Use a Weil cohomology theory in Arakelov
geometry to prove the Riemann Hypothesis.
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Arakelov geometry

Arakelov geometry – algebraic geometry over Spec Z̄, the
hypothetical one-point compactification of SpecZ.

Algebraic geometry: point = prime ideal in Z

Algebraic number theory: point = valuation on Q
Spec Z̄ itself is not a real scheme, but

Definition (Durov (2009))

Z̄-module = abelian group + norm on Ab R.
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Arakelov geometry

Question: Why should we consider a prime at infinity?

1 ζ̂psq � ζ8psq
±

p
1

1�p�s where ζ8psq � π�s{2Γp s2q

ζ̂psq better behaved than ζpsq:

functional equation ζ̂p1 � sq � ζ̂psq
no trivial zeros (ζ̂psq � 0 implies Re s � 1

2 )

2 Tate Duality (1962, class field theory): H i pZq � H3�i
c pZq

suggests that

compactification SpecZ = closed 3-manifold
compare Poincare Duality: H i pMq � Hn�i

c pMq
if M� is a closed n-manifold

See also: Knots and Primes -Morishita
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Reconnaissance

Summary so far:

1 ModZ̄ – category of ‘normed abelian groups’

2 Interpret as: category of vector bundles over Spec Z̄
3 Goal: Construct a Weil cohomology theory for Spec Z̄
4 Ñ Riemann Hypothesis

Question: What are examples of cohomology theories H�pRq
which can be defined in terms of ModR? (Morita invariance)

Morita invariant: algebraic K-theory, Hochschild homology,
cyclic homology, periodic cyclic homology

not Morita invariant: etale cohomology, crystalline
cohomology, any known Weil cohomology theory
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Reconnaissance

Two big problems:

1 Construct a Morita invariant Weil cohomology theory.

2 If H� is Morita invariant, make sense of H�pZ̄q.

We will focus on (2), but:

(Blumberg/Mandell 2017, Hesselholt) Topological periodic cyclic
homology is Morita invariant and close to a Weil theory.

Part 2: Algebraic K-theory
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Algebraic K-theory

Goal: Study Morita invariant cohomology theories, related to ζpsq,
then extend them to Arakelov geometry.

Algebraic K-theory – Morita invariant and related to ζpsq!

1 GLpRq � group of infinite invertible matrices with entries in
R, equal to I except in finitely many places

2 KR � topological group (spectrum), H�pKRq � H�
gppGLpRqq

3 K�R � π�KR

K�Z is very hard to compute but related to number theory:

Example

(Kurihara 1992) K4nZ � 0 Ø Vandiver Conjecture (ca 1850!);
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Algebraic K-theory

Example (Main Conjecture, Iwasawa Theory)

(Wiles 1990)
|K4k�2Z|
|K4k�1Z| � |ζp1 � 2kq| up to a power of 2.

Example

(Thomason 1980s) If X is a curve over Fq,

|K2i�2X | � |K2i�3Fq|

|K2i�1Fq| � |K2i�3X |
� |ζX p1 � iq|
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Algebraic K-theory

Conjecture

|K4k�2Z̄|
|K4k�1Z̄|

� |ζ̂p1 � 2kq| exactly

Question: What is K�Z̄

� K�ModZ̄?

C = category equipped with groups Exti pX ,Y q for all X ,Y P C
Waldhausen’s S
-construction Ñ cohomology groups KiC

Example

C � ModR , Exti pX ,Y q � RHomi pX ,Y q right derived functors
K�ModR � K�R
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Algebraic K-theory

Why consider K-theory as an invariant of ModR instead of R?

1 necessary for the application to Arakelov geometry

2 necessary to state the Localization Theorem:

Theorem (Localization Theorem a la Thomason 1980s)

If C � D, there is a long exact sequence

� � � Ñ KnpCq Ñ KnpDq Ñ KnpD{Cq Ñ Kn�1pCq Ñ � � �

D{C � Verdier quotient.

Example

� � � Ñ
à
p

KnFp Ñ KnZÑ KnQÑ
à
p

Kn�1Fp Ñ � � �

even though there is no R Ñ ZÑ Q with KnR �
À

p KnFp.
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Reconnaissance

Summary: K� defined for any category equipped with Ext groups
If R is a ring, K�ModR agrees with the ‘classical’ K�R

We want to understand K�ModZ̄.

Problem: ModZ̄ is not naturally equipped with Ext groups
(related to: normed vector space don’t form an abelian category)

Next step: What exactly does it mean to ‘have Ext groups’?
Can this condition be weakened?

Part 3: Category theory
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8-categories

Definition (1960s)

A spectrum (a la algebraic topology) is a:

cohomology theory such as K�pRq or Ext�RpM,Nq

space KR or ExtRpM,Nq with structure of an abelian group
‘up to homotopy’: xy � yx as X � X Ñ X

related by: KnR � πnpKRq

Philosophy: Spectra are only defined up to homotopy equivalence.

Definition (2000s, Joyal/Lurie)

An 8-category is a category in which morphisms are only defined
up to homotopy, objects up to homotopy equivalence.

(no notion of isomorphic objects or equal morphisms)
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8-categories

Examples of 8-categories:

spaces up to homotopy equivalence
(‘homotopy types’ or ‘8-groupoids’)

spectra (‘cohomology theories’)

Ch
ModR up to weak equivalence (the derived category)

8-categories can be studied using:

combinatorics of simplicial sets
(Joyal/Rezk/Lurie/Barwick, 2000s)

formal techniques familiar to category theorists
(Yoneda lemma, adjoint functor theorem)

purely algebraic techniques of higher algebra
(Lurie/Nikolaus/Mathew/Scholze/etc., 2010s)
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8-categories

Recall: K� is an invariant of ‘categories with Ext groups’
Category with Ext groups = 8-category enriched in spectra

R = category or 8-category

Definition (Gepner-Haugseng 2013)

An R-enriched category has a set S of objects, and Hom-objects
HompX ,Y q P R which assemble together suitably.

Example

If R = abelian groups, an R-enriched category is a category C for
which morphisms f , g : X Ñ Y can be added and subtracted.
Example: ModR is enriched in abelian groups via HomRpM,Nq
- or in spectra via Ext�RpM,Nq
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8-categories

Upshot: K� is an invariant of spectrum-enriched 8-categories

Theorem (Blumberg-Gepner-Tabuada 2013)

K-theory is the universal invariant of spectrum-enriched
8-categories which satisfies the Localization Theorem.

(no such universal property without 8-categories!)

We wanted K�Z̄ � K�ModZ̄, but
Problem: ModZ̄ not naturally enriched in spectra
Solution: ModZ̄ is enriched in ‘Arakelov spectra’ !
- spectrum E + norms on E b R
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My work

My work:

1 (2020) theory of enriched 8-categories reduces to algebra;

2 (2019) new cohomology theories on enriched 8-categories;
(topological Hochschild homology, K-theory)

Future goals:

1 calculate K�Z̄; verify |K4n�2Z̄|
|K4n�1Z̄|

� |ζp1 � 2nq|;

2 other applications of enriched 8-categories to K-theory:

K pQpq and K pRq topologized ‘correctly’
K pK pRqq and redshift conjecture

A goal for all of us:
Find a Morita invariant Weil cohomology theory
Ñ Riemann Hypothesis
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Enriched 8-categories

Theorem (B. 20201)

EnrCatR is a full subcategory of Mod�R.

Mod�R = R-modules with set of distinguished objects

R-module M with set S of objects in the essential image if
and only if MÑ RS is a conservative functor of R-modules

(enriched 8-categories � higher algebra)

Example

S = 8-category of spectra
S-enriched 8-categories � S-module
K� – S-module invariant with universal property

1Enriched 8-categories I: enriched presheaves. https://arxiv.org/abs/2008.11323
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K� of an enriched 8-category

K-theory is defined on

trings/schemesu � tspectrum-enriched 8-categoriesu � tS-modulesu

Using this algebraic model for R-enriched categories,

Definition (universal property for K-theory)

K-theory is the universal invariant of R-modules

K : Mod�R Ñ R

sending Verdier quotients to cofibers (Blumberg-Gepner-Tabuada)

Questions:

Are these definitions equivalent?

K�pSpec Z̄q is now well-defined! How do we compute it?
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