Algebraic K-Theory and $\zeta(s)$

John D. Berman NSF Postdoc University of Texas

November 12, 2020

John D. Berman NSF Postdoc University of Texas Algebraic K-Theory and $\zeta(s)$

★ ∃ → ★ ∃

 $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$

伺 ト く ヨ ト く ヨ ト

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \frac{1}{1 - p^{-s}}$$

• • = • • = •

э

$$\begin{aligned} \zeta(s) &= \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \frac{1}{1-p^{-s}} \\ \text{(converges when } \text{Re} \, s > 1 \text{, but analytically continued to } \mathbb{C} \text{)} \end{aligned}$$

★ ∃ → ★ ∃

$$\begin{split} \zeta(s) &= \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \frac{1}{1-p^{-s}} \\ \text{(converges when } \text{Re}\,s > 1 \text{, but analytically continued to } \mathbb{C} \text{)} \end{split}$$

Conjecture (Riemann Hypothesis 1859)

If $\zeta(s) = 0$, then s is a negative even integer or $\text{Re } s = \frac{1}{2}$.

• • = • • = •

$$\begin{split} \zeta(s) &= \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \frac{1}{1-p^{-s}} \\ \text{(converges when } \text{Re}\,s > 1 \text{, but analytically continued to } \mathbb{C} \text{)} \end{split}$$

Conjecture (Riemann Hypothesis 1859)

If $\zeta(s) = 0$, then s is a negative even integer or $\text{Re } s = \frac{1}{2}$.

Generalization: If R is a commutative ring,

$$\zeta_R(s) = \prod_{\mathfrak{m}\in\mathsf{MaxSpec}\ R} rac{1}{1-|R/\mathfrak{m}|^{-s}}$$

A B F A B F

 $\zeta(\boldsymbol{s}) = \zeta_{\mathbb{Z}}(\boldsymbol{s})$

If X is a curve over \mathbb{F}_q , then $\zeta_X(s) = 0$ implies $\operatorname{Re} s = \frac{1}{2}$.

Proof by Grothendieck/Deligne ('70s) after Weil conjectures ('40s):

→ Ξ →

If X is a curve over \mathbb{F}_q , then $\zeta_X(s) = 0$ implies $\operatorname{Re} s = \frac{1}{2}$.

Proof by Grothendieck/Deligne ('70s) after Weil conjectures ('40s):

• Construct a Weil cohomology theory for schemes over \mathbb{F}_q

If X is a curve over \mathbb{F}_q , then $\zeta_X(s) = 0$ implies $\operatorname{Re} s = \frac{1}{2}$.

Proof by Grothendieck/Deligne ('70s) after Weil conjectures ('40s):

- Construct a Weil cohomology theory for schemes over \mathbb{F}_q
- Zeros of ζ_X with $\text{Re} = \frac{i}{2} \leftrightarrow \text{eigenvalues of Frobenius} \hookrightarrow H^i(X)$

If X is a curve over \mathbb{F}_q , then $\zeta_X(s) = 0$ implies $\operatorname{Re} s = \frac{1}{2}$.

Proof by Grothendieck/Deligne ('70s) after Weil conjectures ('40s):

- Construct a Weil cohomology theory for schemes over \mathbb{F}_q
- Zeros of ζ_X with $\text{Re} = \frac{i}{2} \leftrightarrow \text{eigenvalues of Frobenius} \hookrightarrow H^i(X)$
- Since X is a curve, $H^i(X)$ concentrated in i = 0, 1, 2

If X is a curve over \mathbb{F}_q , then $\zeta_X(s) = 0$ implies $\operatorname{Re} s = \frac{1}{2}$.

Proof by Grothendieck/Deligne ('70s) after Weil conjectures ('40s):

- Construct a Weil cohomology theory for schemes over \mathbb{F}_q
- Zeros of ζ_X with $\text{Re} = \frac{i}{2} \leftrightarrow \text{eigenvalues of Frobenius} \hookrightarrow H^i(X)$

→ < Ξ → <</p>

• Since X is a curve, $H^i(X)$ concentrated in i = 0, 1, 2

Deninger ('90s): Use a Weil cohomology theory in *Arakelov* geometry to prove the Riemann Hypothesis.

Arakelov geometry – algebraic geometry over Spec $\overline{\mathbb{Z}}$, the hypothetical one-point compactification of Spec \mathbb{Z} .

→ Ξ →

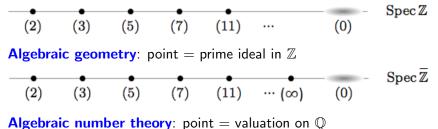
Arakelov geometry

Arakelov geometry – algebraic geometry over Spec $\overline{\mathbb{Z}}$, the hypothetical one-point compactification of Spec \mathbb{Z} .

< ∃ >

 $v_{\infty}(n) = \ln|n|$

Arakelov geometry – algebraic geometry over Spec $\overline{\mathbb{Z}}$, the hypothetical one-point compactification of Spec \mathbb{Z} .



Spec $\overline{\mathbb{Z}}$ itself is not a real scheme, but

Definition (Durov (2009))

 $\overline{\mathbb{Z}}$ -module = abelian group + norm on $A \otimes \mathbb{R}$.

Question: Why should we consider a prime at infinity?

★ ∃ → ★ ∃

Question: Why should we consider a prime at infinity? **a** $\hat{\zeta}(s) = \zeta_{\infty}(s) \prod_{p} \frac{1}{1-p^{-s}}$ where $\zeta_{\infty}(s) = \pi^{-s/2} \Gamma(\frac{s}{2})$ $\hat{\zeta}(s)$ better behaved than $\zeta(s)$:

• • = • • = •

Arakelov geometry

Question: Why should we consider a prime at infinity? **a** $\hat{\zeta}(s) = \zeta_{\infty}(s) \prod_{p} \frac{1}{1-p^{-s}}$ where $\zeta_{\infty}(s) = \pi^{-s/2} \Gamma(\frac{s}{2})$ $\hat{\zeta}(s)$ better behaved than $\zeta(s)$:

- functional equation $\hat{\zeta}(1-s) = \hat{\zeta}(s)$
- no trivial zeros ($\hat{\zeta}(s) = 0$ implies Re $s = \frac{1}{2}$)

Question: Why should we consider a prime at infinity?

•
$$\hat{\zeta}(s) = \zeta_{\infty}(s) \prod_{p} \frac{1}{1-p^{-s}}$$
 where $\zeta_{\infty}(s) = \pi^{-s/2} \Gamma(\frac{s}{2})$
 $\hat{\zeta}(s)$ better behaved than $\zeta(s)$:

- functional equation $\hat{\zeta}(1-s) = \hat{\zeta}(s)$
- no trivial zeros ($\hat{\zeta}(s) = 0$ implies $\operatorname{Re} s = \frac{1}{2}$)
- **②** Tate Duality (1962, class field theory): $H^i(\mathbb{Z}) \cong H^{3-i}_c(\mathbb{Z})$

Question: Why should we consider a prime at infinity?

•
$$\hat{\zeta}(s) = \zeta_{\infty}(s) \prod_{p} \frac{1}{1-p^{-s}}$$
 where $\zeta_{\infty}(s) = \pi^{-s/2} \Gamma(\frac{s}{2})$
 $\hat{\zeta}(s)$ better behaved than $\zeta(s)$:

- functional equation $\hat{\zeta}(1-s) = \hat{\zeta}(s)$
- no trivial zeros $(\hat{\zeta}(s) = 0 \text{ implies } \operatorname{Re} s = \frac{1}{2})$
- Solution 3 Tate Duality (1962, class field theory): $H^i(\mathbb{Z}) \cong H^{3-i}_c(\mathbb{Z})$ suggests that
 - compactification $\operatorname{Spec} \mathbb{Z} = \operatorname{closed}$ 3-manifold
 - compare Poincare Duality: Hⁱ(M) ≅ Hⁿ⁻ⁱ_c(M) if M⁺ is a closed n-manifold

See also: Knots and Primes - Morishita

- **1** Mod $_{\overline{\mathbb{Z}}}$ category of 'normed abelian groups'
- **2** Interpret as: category of vector bundles over Spec $\overline{\mathbb{Z}}$

- **2** Interpret as: category of vector bundles over Spec $\overline{\mathbb{Z}}$
- **§ Goal**: Construct a Weil cohomology theory for Spec $\bar{\mathbb{Z}}$

- **2** Interpret as: category of vector bundles over Spec $\bar{\mathbb{Z}}$
- **§ Goal**: Construct a Weil cohomology theory for Spec $\bar{\mathbb{Z}}$

- **2** Interpret as: category of vector bundles over Spec $\bar{\mathbb{Z}}$
- **§ Goal**: Construct a Weil cohomology theory for Spec $\bar{\mathbb{Z}}$
- $\textcircled{9} \rightarrow \mathsf{Riemann} \ \mathsf{Hypothesis}$

Question: What are examples of cohomology theories $H^*(R)$ which can be defined in terms of Mod_R ? (*Morita invariance*)

- **2** Interpret as: category of vector bundles over Spec $\overline{\mathbb{Z}}$
- **§ Goal**: Construct a Weil cohomology theory for Spec $\bar{\mathbb{Z}}$
- $\bigcirc \rightarrow$ Riemann Hypothesis

Question: What are examples of cohomology theories $H^*(R)$ which can be defined in terms of Mod_R ? (*Morita invariance*)

(if H^* Morita invariant, $Mod_R \cong Mod_S$ implies $H^*(R) \cong H^*(S)$)

- **2** Interpret as: category of vector bundles over Spec $\bar{\mathbb{Z}}$
- **§ Goal**: Construct a Weil cohomology theory for Spec $\overline{\mathbb{Z}}$
- $\textcircled{9} \rightarrow \mathsf{Riemann} \ \mathsf{Hypothesis}$

Question: What are examples of cohomology theories $H^*(R)$ which can be defined in terms of Mod_R ? (*Morita invariance*)

- Morita invariant: algebraic K-theory, Hochschild homology, cyclic homology, periodic cyclic homology
- not Morita invariant: etale cohomology, crystalline cohomology, any known Weil cohomology theory

Two big problems:

- Construct a Morita invariant Weil cohomology theory.
- **2** If H^* is Morita invariant, make sense of $H^*(\overline{\mathbb{Z}})$.

Two big problems:

- Construct a Morita invariant Weil cohomology theory.
- **2** If H^* is Morita invariant, make sense of $H^*(\overline{\mathbb{Z}})$.
- We will focus on (2), but:

(Blumberg/Mandell 2017, Hesselholt) Topological periodic cyclic homology is Morita invariant and close to a Weil theory.

Two big problems:

- Construct a Morita invariant Weil cohomology theory.
- **2** If H^* is Morita invariant, make sense of $H^*(\overline{\mathbb{Z}})$.
- We will focus on (2), but:

(Blumberg/Mandell 2017, Hesselholt) Topological periodic cyclic homology is Morita invariant and close to a Weil theory.

Part 2: Algebraic K-theory

< ∃ >

Algebraic K-theory – Morita invariant and related to $\zeta(s)$!

Algebraic K-theory

Goal: Study Morita invariant cohomology theories, related to $\zeta(s)$, then extend them to Arakelov geometry.

Algebraic K-theory – Morita invariant and related to ζ(s)!
GL(R) = group of infinite invertible matrices with entries in R, equal to I except in finitely many places

$$\begin{pmatrix} [M] & & \\ & 1 & \\ & & 1 & \\ & & & \ddots \end{pmatrix}, M \in \operatorname{GL}_n(R)$$

Algebraic K-theory – Morita invariant and related to $\zeta(s)$!

- GL(R) = group of infinite invertible matrices with entries in R, equal to I except in finitely many places
- **2** KR = topological group (*spectrum*), $H^*(KR) \cong H^*_{gp}(GL(R))$

Algebraic K-theory – Morita invariant and related to $\zeta(s)$!

- GL(R) = group of infinite invertible matrices with entries in R, equal to I except in finitely many places
- **2** KR = topological group (*spectrum*), $H^*(KR) \cong H^*_{gp}(GL(R))$

$$\bullet K_*R = \pi_*KR$$

Algebraic K-theory – Morita invariant and related to $\zeta(s)$!

- GL(R) = group of infinite invertible matrices with entries in R, equal to I except in finitely many places
- **2** KR = topological group (*spectrum*), $H^*(KR) \cong H^*_{gp}(GL(R))$

$$M_*R = \pi_*KR$$

 $K_*\mathbb{Z}$ is very hard to compute but related to number theory:

Example

(Kurihara 1992) $K_{4n}\mathbb{Z} = 0 \leftrightarrow$ Vandiver Conjecture (ca 1850!);

伺 ト イヨ ト イヨト

$K_0(\mathbb{Z}) = \mathbb{Z}$	$K_8(\mathbb{Z}) = (0?)$	$K_{16}(\mathbb{Z}) = (0?)$	$K_{8k}(\mathbb{Z}) = (0?), k \ge 1$
$K_1(\mathbb{Z}) = \mathbb{Z}/2$	$K_9(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}/2$	$K_{17}(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}/2$	$K_{8k+1}(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}/2$
$K_2(\mathbb{Z}) = \mathbb{Z}/2$	$K_{10}(\mathbb{Z}) = \mathbb{Z}/2$	$K_{18}(\mathbb{Z}) = \mathbb{Z}/2$	$K_{8k+2}(\mathbb{Z}) = \mathbb{Z}/2c_{2k+1}$
$K_3(\mathbb{Z}) = \mathbb{Z}/48$	$K_{11}(\mathbb{Z}) = \mathbb{Z}/1008$	$K_{19}(\mathbb{Z}) = \mathbb{Z}/528$	$K_{8k+3}(\mathbb{Z}) = \mathbb{Z}/2w_{4k+2}$
$K_4(\mathbb{Z}) = 0$	$K_{12}(\mathbb{Z}) = (0?)$	$K_{20}(\mathbb{Z}) = (0?)$	$K_{8k+4}(\mathbb{Z}) = (0?)$
$K_5(\mathbb{Z}) = \mathbb{Z}$	$K_{13}(\mathbb{Z}) = \mathbb{Z}$	$K_{21}(\mathbb{Z}) = \mathbb{Z}$	$K_{8k+5}(\mathbb{Z}) = \mathbb{Z}$
$K_{6}(\mathbb{Z}) = 0$	$K_{14}(\mathbb{Z}) = 0$	$K_{22}(\mathbb{Z}) = \mathbb{Z}/691$	$K_{8k+6}(\mathbb{Z}) = \mathbb{Z}/c_{2k+2}$
$K_7(\mathbb{Z}) = \mathbb{Z}/240$	$K_{15}(\mathbb{Z}) = \mathbb{Z}/480$	$K_{23}(\mathbb{Z}) = \mathbb{Z}/65520$	$K_{8k+7}(\mathbb{Z}) = \mathbb{Z}/w_{4k+4}.$

æ

() 《 문 》 《

$K_0(\mathbb{Z}) = \mathbb{Z}$	$K_8(\mathbb{Z}) = (0?)$	$K_{16}(\mathbb{Z}) = (0?)$	$K_{8k}(\mathbb{Z}) = (0?), k \ge 1$
$K_1(\mathbb{Z}) = \mathbb{Z}/2$	$K_9(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}/2$	$K_{17}(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}/2$	$K_{8k+1}(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}/2$
$K_2(\mathbb{Z}) = \mathbb{Z}/2$	$K_{10}(\mathbb{Z}) = \mathbb{Z}/2$	$K_{18}(\mathbb{Z}) = \mathbb{Z}/2$	$K_{8k+2}(\mathbb{Z}) = \mathbb{Z}/2c_{2k+1}$
$K_3(\mathbb{Z}) = \mathbb{Z}/48$	$K_{11}(\mathbb{Z}) = \mathbb{Z}/1008$	$K_{19}(\mathbb{Z}) = \mathbb{Z}/528$	$K_{8k+3}(\mathbb{Z}) = \mathbb{Z}/2w_{4k+2}$
$K_4(\mathbb{Z}) = 0$	$K_{12}(\mathbb{Z}) = (0?)$	$K_{20}(\mathbb{Z}) = (0?)$	$K_{8k+4}(\mathbb{Z}) = (0?)$
$K_5(\mathbb{Z}) = \mathbb{Z}$	$K_{13}(\mathbb{Z}) = \mathbb{Z}$	$K_{21}(\mathbb{Z}) = \mathbb{Z}$	$K_{8k+5}(\mathbb{Z}) = \mathbb{Z}$
$K_{6}(\mathbb{Z}) = 0$	$K_{14}(\mathbb{Z}) = 0$	$K_{22}(\mathbb{Z}) = \mathbb{Z}/691$	$K_{8k+6}(\mathbb{Z}) = \mathbb{Z}/c_{2k+2}$
$K_7(\mathbb{Z}) = \mathbb{Z}/240$	$K_{15}(\mathbb{Z}) = \mathbb{Z}/480$	$K_{23}(\mathbb{Z}) = \mathbb{Z}/65520$	$K_{8k+7}(\mathbb{Z}) = \mathbb{Z}/w_{4k+4}.$

Example (Main Conjecture, Iwasawa Theory)

(Wiles 1990)
$$\frac{|K_{4k-2}\mathbb{Z}|}{|K_{4k-1}\mathbb{Z}|} = |\zeta(1-2k)|$$
 up to a power of 2.

• • = • • = •

$K_0(\mathbb{Z}) = \mathbb{Z}$	$K_8(\mathbb{Z}) = (0?)$	$K_{16}(\mathbb{Z}) = (0?)$	$K_{8k}(\mathbb{Z}) = (0?), k \ge 1$
$K_1(\mathbb{Z}) = \mathbb{Z}/2$	$K_9(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}/2$	$K_{17}(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}/2$	$K_{8k+1}(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}/2$
$K_2(\mathbb{Z}) = \mathbb{Z}/2$	$K_{10}(\mathbb{Z}) = \mathbb{Z}/2$	$K_{18}(\mathbb{Z}) = \mathbb{Z}/2$	$K_{8k+2}(\mathbb{Z}) = \mathbb{Z}/2c_{2k+1}$
$K_3(\mathbb{Z}) = \mathbb{Z}/48$	$K_{11}(\mathbb{Z}) = \mathbb{Z}/1008$	$K_{19}(\mathbb{Z}) = \mathbb{Z}/528$	$K_{8k+3}(\mathbb{Z}) = \mathbb{Z}/2w_{4k+2}$
$K_4(\mathbb{Z}) = 0$	$K_{12}(\mathbb{Z}) = (0?)$	$K_{20}(\mathbb{Z}) = (0?)$	$K_{8k+4}(\mathbb{Z}) = (0?)$
$K_5(\mathbb{Z}) = \mathbb{Z}$	$K_{13}(\mathbb{Z}) = \mathbb{Z}$	$K_{21}(\mathbb{Z}) = \mathbb{Z}$	$K_{8k+5}(\mathbb{Z}) = \mathbb{Z}$
$K_6(\mathbb{Z}) = 0$	$K_{14}(\mathbb{Z}) = 0$	$K_{22}(\mathbb{Z}) = \mathbb{Z}/691$	$K_{8k+6}(\mathbb{Z}) = \mathbb{Z}/c_{2k+2}$
$K_7(\mathbb{Z}) = \mathbb{Z}/240$	$K_{15}(\mathbb{Z}) = \mathbb{Z}/480$	$K_{23}(\mathbb{Z}) = \mathbb{Z}/65520$	$K_{8k+7}(\mathbb{Z}) = \mathbb{Z}/w_{4k+4}.$

Example (Main Conjecture, Iwasawa Theory)

(Wiles 1990)
$$\frac{|K_{4k-2}\mathbb{Z}|}{|K_{4k-1}\mathbb{Z}|} = |\zeta(1-2k)|$$
 up to a power of 2.

Example

(Thomason 1980s) If X is a curve over \mathbb{F}_q ,

$$\frac{|K_{2i-2}X| \cdot |K_{2i-3}\mathbb{F}_q|}{|K_{2i-1}\mathbb{F}_q| \cdot |K_{2i-3}X|} = |\zeta_X(1-i)|$$

$$rac{|K_{4k-2}ar{\mathbb{Z}}|}{|K_{4k-1}ar{\mathbb{Z}}|} = |\hat{\zeta}(1-2k)|$$
 exactly

Question: What is $K_*\overline{\mathbb{Z}}$

-∢ ≣ ▶

$$rac{|K_{4k-2}\bar{\mathbb{Z}}|}{|K_{4k-1}\bar{\mathbb{Z}}|} = |\hat{\zeta}(1-2k)|$$
 exactly

Question: What is $K_*\overline{\mathbb{Z}} = K_* \text{Mod}_{\overline{\mathbb{Z}}}$?

→ 3 → < 3</p>

$$rac{|K_{4k-2}ar{\mathbb{Z}}|}{|K_{4k-1}ar{\mathbb{Z}}|} = |\hat{\zeta}(1-2k)|$$
 exactly

Question: What is $K_*\overline{\mathbb{Z}} = K_* \text{Mod}_{\overline{\mathbb{Z}}}$?

C = category equipped with groups $Ext^{i}(X, Y)$ for all $X, Y \in C$ Waldhausen's *S*_•-construction \rightarrow cohomology groups $K_{i}C$

$$rac{|K_{4k-2}ar{\mathbb{Z}}|}{|K_{4k-1}ar{\mathbb{Z}}|} = |\hat{\zeta}(1-2k)|$$
 exactly

Question: What is $K_*\overline{\mathbb{Z}} = K_* \text{Mod}_{\overline{\mathbb{Z}}}$?

C = category equipped with groups $Ext^{i}(X, Y)$ for all $X, Y \in C$ Waldhausen's *S*_•-construction \rightarrow cohomology groups $K_{i}C$

Example

 $\mathcal{C} = \mathsf{Mod}_R, \ \mathsf{Ext}^i(X,Y) = \mathsf{RHom}^i(X,Y) \ \textit{right derived functors} \\ K_*\mathsf{Mod}_R \cong K_*R$

→ < Ξ → <</p>

Why consider K-theory as an invariant of Mod_R instead of R?

necessary for the application to Arakelov geometry

Why consider K-theory as an invariant of Mod_R instead of R?

- Increase the application to Arakelov geometry
- Increase the localization Theorem:

Theorem (Localization Theorem a la Thomason 1980s)

If $\mathcal{C} \subseteq \mathcal{D}$, there is a long exact sequence

$$\cdots \to K_n(\mathcal{C}) \to K_n(\mathcal{D}) \to K_n(\mathcal{D}/\mathcal{C}) \to K_{n-1}(\mathcal{C}) \to \cdots$$

 $\mathcal{D}/\mathcal{C} = Verdier \ quotient.$

Why consider K-theory as an invariant of Mod_R instead of R?

- Increase the application to Arakelov geometry
- Increase the localization Theorem:

Theorem (Localization Theorem a la Thomason 1980s)

If $\mathcal{C} \subseteq \mathcal{D}$, there is a long exact sequence

$$\cdots \to K_n(\mathcal{C}) \to K_n(\mathcal{D}) \to K_n(\mathcal{D}/\mathcal{C}) \to K_{n-1}(\mathcal{C}) \to \cdots$$

 $\mathcal{D}/\mathcal{C} = Verdier \ quotient.$

Example

$$\cdots \to \bigoplus_{p} K_{n} \mathbb{F}_{p} \to K_{n} \mathbb{Z} \to K_{n} \mathbb{Q} \to \bigoplus_{p} K_{n-1} \mathbb{F}_{p} \to \cdots$$

even though there is no $R \to \mathbb{Z} \to \mathbb{Q}$ with $K_n R \cong \bigoplus_p K_n \mathbb{F}_p$.

We want to understand $K_* \operatorname{Mod}_{\overline{\mathbb{Z}}}$.

We want to understand $K_* \operatorname{Mod}_{\overline{\mathbb{Z}}}$.

Problem: $Mod_{\overline{\mathbb{Z}}}$ is not naturally equipped with Ext groups (related to: normed vector space don't form an abelian category)

We want to understand $K_* \operatorname{Mod}_{\overline{\mathbb{Z}}}$.

Problem: $Mod_{\mathbb{Z}}$ is not naturally equipped with Ext groups (related to: normed vector space don't form an abelian category)

Next step: What exactly does it mean to 'have Ext groups'? Can this condition be weakened?

We want to understand $K_* \operatorname{Mod}_{\overline{\mathbb{Z}}}$.

Problem: $Mod_{\mathbb{Z}}$ is not naturally equipped with Ext groups (related to: normed vector space don't form an abelian category)

Next step: What exactly does it mean to 'have Ext groups'? Can this condition be weakened?

Part 3: Category theory

A spectrum (a la algebraic topology) is a:

• cohomology theory such as $K_*(R)$ or $\operatorname{Ext}^*_R(M, N)$

► < Ξ > <</p>

A spectrum (a la algebraic topology) is a:

- cohomology theory such as $K_*(R)$ or $\operatorname{Ext}^*_R(M, N)$
- space KR or $Ext_R(M, N)$ with structure of an abelian group 'up to homotopy': $xy \sim yx$ as $X \times X \to X$

A spectrum (a la algebraic topology) is a:

- cohomology theory such as $K_*(R)$ or $Ext^*_R(M, N)$
- space KR or $Ext_R(M, N)$ with structure of an abelian group 'up to homotopy': $xy \sim yx$ as $X \times X \rightarrow X$
- related by: $K_n R = \pi_n(KR)$

A spectrum (a la algebraic topology) is a:

- cohomology theory such as $K_*(R)$ or $Ext^*_R(M, N)$
- space KR or $Ext_R(M, N)$ with structure of an abelian group 'up to homotopy': $xy \sim yx$ as $X \times X \to X$

• related by:
$$K_n R = \pi_n(KR)$$

Philosophy: Spectra are only defined up to homotopy equivalence.

A spectrum (a la algebraic topology) is a:

- cohomology theory such as $K_*(R)$ or $Ext^*_R(M, N)$
- space KR or $Ext_R(M, N)$ with structure of an abelian group 'up to homotopy': $xy \sim yx$ as $X \times X \rightarrow X$

• related by:
$$K_n R = \pi_n(KR)$$

Philosophy: Spectra are only defined up to homotopy equivalence.

Definition (2000s, Joyal/Lurie)

An ∞ -category is a category in which morphisms are only defined up to homotopy, objects up to homotopy equivalence.

伺 ト イヨト イヨト

(no notion of isomorphic objects or equal morphisms)

- spaces up to homotopy equivalence ('homotopy types' or '∞-groupoids')
- spectra ('cohomology theories')

- spaces up to homotopy equivalence ('homotopy types' or '∞-groupoids')
- spectra ('cohomology theories')
- Ch. Mod_R up to weak equivalence (the *derived category*)

- spaces up to homotopy equivalence ('homotopy types' or '∞-groupoids')
- spectra ('cohomology theories')
- Ch. Mod_R up to weak equivalence (the *derived category*)

 ∞ -categories can be studied using:

 combinatorics of simplicial sets (Joyal/Rezk/Lurie/Barwick, 2000s)

- spaces up to homotopy equivalence ('homotopy types' or '∞-groupoids')
- spectra ('cohomology theories')
- Ch_•Mod_R up to weak equivalence (the *derived category*)

 ∞ -categories can be studied using:

- combinatorics of simplicial sets (Joyal/Rezk/Lurie/Barwick, 2000s)
- formal techniques familiar to category theorists (Yoneda lemma, adjoint functor theorem)

- spaces up to homotopy equivalence ('homotopy types' or '∞-groupoids')
- spectra ('cohomology theories')
- Ch_•Mod_R up to weak equivalence (the *derived category*)

 ∞ -categories can be studied using:

- combinatorics of simplicial sets (Joyal/Rezk/Lurie/Barwick, 2000s)
- formal techniques familiar to category theorists (Yoneda lemma, adjoint functor theorem)
- purely algebraic techniques of *higher algebra* (Lurie/Nikolaus/Mathew/Scholze/etc., 2010s)

→ < Ξ → <</p>

Recall: K_* is an invariant of 'categories with Ext groups' Category with Ext groups = ∞ -category enriched in spectra

Recall: K_* is an invariant of 'categories with Ext groups' Category with Ext groups = ∞ -category enriched in spectra

 $\mathcal{R}=\mathsf{category}\ \mathsf{or}\ \infty\text{-}\mathsf{category}$

Definition (Gepner-Haugseng 2013)

An \mathcal{R} -enriched category has a set S of objects, and Hom-objects $Hom(X, Y) \in \mathcal{R}$ which assemble together suitably.

Recall: K_* is an invariant of 'categories with Ext groups' Category with Ext groups = ∞ -category enriched in spectra

 $\mathcal{R} = \mathsf{category} \text{ or } \infty\text{-}\mathsf{category}$

Definition (Gepner-Haugseng 2013)

An \mathcal{R} -enriched category has a set S of objects, and Hom-objects $Hom(X, Y) \in \mathcal{R}$ which assemble together suitably.

Example

If \mathcal{R} = abelian groups, an \mathcal{R} -enriched category is a category \mathcal{C} for which morphisms $f, g : X \to Y$ can be added and subtracted. **Example**: Mod_R is enriched in abelian groups via Hom_R(M, N) - or in spectra via Ext^{*}_R(M, N)

• • = • • = •

Theorem (Blumberg-Gepner-Tabuada 2013)

K-theory is the universal invariant of spectrum-enriched ∞ -categories which satisfies the Localization Theorem.

Theorem (Blumberg-Gepner-Tabuada 2013)

K-theory is the universal invariant of spectrum-enriched ∞ -categories which satisfies the Localization Theorem.

(no such universal property without ∞ -categories!)

Theorem (Blumberg-Gepner-Tabuada 2013)

K-theory is the universal invariant of spectrum-enriched ∞ -categories which satisfies the Localization Theorem.

(no such universal property without ∞ -categories!)

We wanted $K_*\overline{\mathbb{Z}} = K_*Mod_{\overline{\mathbb{Z}}}$, but **Problem**: $Mod_{\overline{\mathbb{Z}}}$ not naturally enriched in spectra

Theorem (Blumberg-Gepner-Tabuada 2013)

K-theory is the universal invariant of spectrum-enriched ∞ -categories which satisfies the Localization Theorem.

(no such universal property without ∞ -categories!)

We wanted $K_*\overline{\mathbb{Z}} = K_* \operatorname{Mod}_{\overline{\mathbb{Z}}}$, but **Problem**: $\operatorname{Mod}_{\overline{\mathbb{Z}}}$ not naturally enriched in spectra **Solution**: $\operatorname{Mod}_{\overline{\mathbb{Z}}}$ is enriched in 'Arakelov spectra'! - spectrum E + norms on $E \otimes \mathbb{R}$

- (2020) theory of enriched ∞ -categories reduces to algebra;
- (2019) new cohomology theories on enriched ∞-categories; (topological Hochschild homology, K-theory)

► < Ξ > <</p>

- (2020) theory of enriched ∞ -categories reduces to algebra;
- (2019) new cohomology theories on enriched ∞-categories; (topological Hochschild homology, K-theory)

Future goals:

• calculate
$$K_*\overline{\mathbb{Z}}$$
; verify $\frac{|K_{4n-2}\overline{\mathbb{Z}}|}{|K_{4n-1}\overline{\mathbb{Z}}|} = |\zeta(1-2n)|;$

► < Ξ > <</p>

- (2020) theory of enriched ∞ -categories reduces to algebra;
- (2019) new cohomology theories on enriched ∞-categories; (topological Hochschild homology, K-theory)

Future goals:

- calculate $K_*\overline{\mathbb{Z}}$; verify $\frac{|K_{4n-2}\overline{\mathbb{Z}}|}{|K_{4n-1}\overline{\mathbb{Z}}|} = |\zeta(1-2n)|;$
- 2) other applications of enriched ∞ -categories to K-theory:
 - $K(\mathbb{Q}_p)$ and $K(\mathbb{R})$ topologized 'correctly'

- (2020) theory of enriched ∞ -categories reduces to algebra;
- (2019) new cohomology theories on enriched ∞-categories; (topological Hochschild homology, K-theory)

Future goals:

- calculate $K_*\overline{\mathbb{Z}}$; verify $\frac{|K_{4n-2}\overline{\mathbb{Z}}|}{|K_{4n-1}\overline{\mathbb{Z}}|} = |\zeta(1-2n)|;$
- 2) other applications of enriched ∞ -categories to K-theory:

• • = • • = •

- $K(\mathbb{Q}_p)$ and $K(\mathbb{R})$ topologized 'correctly'
- K(K(R)) and redshift conjecture

- (2020) theory of enriched ∞ -categories reduces to algebra;
- (2019) new cohomology theories on enriched ∞-categories; (topological Hochschild homology, K-theory)

Future goals:

• calculate $K_*\overline{\mathbb{Z}}$; verify $\frac{|K_{4n-2}\overline{\mathbb{Z}}|}{|K_{4n-1}\overline{\mathbb{Z}}|} = |\zeta(1-2n)|;$

2) other applications of enriched ∞ -categories to K-theory:

• • = • • = •

- $K(\mathbb{Q}_p)$ and $K(\mathbb{R})$ topologized 'correctly'
- K(K(R)) and redshift conjecture

A goal for all of us:

Find a Morita invariant Weil cohomology theory

- (2020) theory of enriched ∞ -categories reduces to algebra;
- (2019) new cohomology theories on enriched ∞-categories; (topological Hochschild homology, K-theory)

Future goals:

• calculate $K_*\overline{\mathbb{Z}}$; verify $\frac{|K_{4n-2}\overline{\mathbb{Z}}|}{|K_{4n-1}\overline{\mathbb{Z}}|} = |\zeta(1-2n)|;$

2) other applications of enriched ∞ -categories to K-theory:

• • = • • = •

- $K(\mathbb{Q}_p)$ and $K(\mathbb{R})$ topologized 'correctly'
- K(K(R)) and redshift conjecture

A goal for all of us:

Find a Morita invariant Weil cohomology theory

 \rightarrow Riemann Hypothesis

Theorem (B. 2020¹)

$EnrCat_{\mathcal{R}}$ is a full subcategory of $Mod_{\mathcal{R}}^{\star}$.

- $\textit{Mod}_{\mathcal{R}}^{\star} = \mathcal{R}\text{-modules}$ with set of distinguished objects
- \mathcal{R} -module \mathcal{M} with set S of objects in the essential image if and only if $\mathcal{M} \to \mathcal{R}^S$ is a conservative functor of \mathcal{R} -modules

(enriched ∞ -categories \subseteq higher algebra)

Example

 $\mathcal{S} = \infty$ -category of spectra

 \mathcal{S} -enriched ∞ -categories $\subseteq \mathcal{S}$ -module

 $K_* - S$ -module invariant with universal property

¹Enriched ∞ -categories I: enriched presheaves. https://arxiv.org/abs/2008.1323 ~ 0.000

K-theory is defined on

 $\{\mathsf{rings/schemes}\} \subseteq \{\mathsf{spectrum-enriched} \ \infty\text{-categories}\} \subseteq \{\mathcal{S}\text{-modules}\}$

Using this algebraic model for \mathcal{R} -enriched categories,

Definition (universal property for K-theory)

K-theory is the universal invariant of \mathcal{R} -modules

 $K:\mathsf{Mod}^{\star}_{\mathcal{R}}\to \mathcal{R}$

sending Verdier quotients to cofibers (Blumberg-Gepner-Tabuada)

Questions:

- Are these definitions equivalent?
- $K_*(\operatorname{Spec} \overline{\mathbb{Z}})$ is now well-defined! How do we compute it?