Enumerative Geometry of Pascal's Theorem

Jaydeep Chipalkatti

September 28th, 2023

Pascal's Theorem

The Pascal line is denoted by $\left\{\begin{array}{ccc}A & B & C \\ F & E & D\end{array}\right\}$.

The same six points give several different lines such as

$$
\left\{\begin{array}{lll}
B & A & F \\
C & D & E
\end{array}\right\}, \quad\left\{\begin{array}{ccc}
F & A & C \\
D & E & B
\end{array}\right\}, \quad \text { etc. }
$$

The same six points give several different lines such as

$$
\left\{\begin{array}{lll}
B & A & F \\
C & D & E
\end{array}\right\}, \quad\left\{\begin{array}{ccc}
F & A & C \\
D & E & B
\end{array}\right\}, \quad \text { etc. }
$$

The same six points give several different lines such as

$$
\left\{\begin{array}{lll}
B & A & F \\
C & D & E
\end{array}\right\}, \quad\left\{\begin{array}{ccc}
F & A & C \\
D & E & B
\end{array}\right\}, \quad \text { etc. }
$$

Altogether we get $\quad \frac{6!}{2 \times 3!}=60 \quad$ Pascal lines.

The same six points give several different lines such as

$$
\left\{\begin{array}{lll}
B & A & F \\
C & D & E
\end{array}\right\}, \quad\left\{\begin{array}{ccc}
F & A & C \\
D & E & B
\end{array}\right\}, \quad \text { etc. }
$$

Altogether we get $\quad \frac{6!}{2 \times 3!}=60 \quad$ Pascal lines.

Points (A, B, \ldots, F) on a conic $\rightsquigarrow 60$ lines in the plane

The same six points give several different lines such as

$$
\left\{\begin{array}{lll}
B & A & F \\
C & D & E
\end{array}\right\}, \quad\left\{\begin{array}{ccc}
F & A & C \\
D & E & B
\end{array}\right\}, \quad \text { etc. }
$$

Altogether we get $\quad \frac{6!}{2 \times 3!}=60 \quad$ Pascal lines.

Points (A, B, \ldots, F) on a conic $\rightsquigarrow 60$ lines in the plane

Can we go backwards?

6 points on a conic
\Rightarrow both depend on 6 parameters
3 lines in a plane

6 points on a conic
\Rightarrow both depend on 6 parameters
3 lines in a plane

Can we pre-specify 3 Pascal lines and look for the original 6 points?

Can we find points (A, B, \ldots, F) such that

$$
\left\{\begin{array}{ccc}
A & B & C \\
F & E & D
\end{array}\right\}, \quad\left\{\begin{array}{ccc}
F & A & C \\
D & E & B
\end{array}\right\}, \quad\left\{\begin{array}{ccc}
E & B & C \\
F & D & A
\end{array}\right\}
$$

respectively correspond to green, red and purple lines?

We expect a FINITE number of solutions.

We expect a FINITE number of solutions.

We expect a FINITE number of solutions.

The Computation

Fix the conic: $x z=y^{2}$.

Fix an isomorphism

$$
\mathbb{P}^{1} \xrightarrow{\sim} \text { conic, } \quad a \longrightarrow\left[1: a: a^{2}\right]=A .
$$

Then the Pascal line $\left\{\begin{array}{ccc}A & B & C \\ F & E & D\end{array}\right\}$ has homogeneous coordinates

$$
\begin{aligned}
& u_{x}=a b d e-a b d f+\cdots+b c d f \\
& u_{y}=a b f-a b e+\cdots+c d e \\
& u_{z}=a e-a d+\cdots+c f
\end{aligned}
$$

Then the Pascal line $\left\{\begin{array}{ccc}A & B & C \\ F & E & D\end{array}\right\}$ has homogeneous coordinates

$$
\begin{aligned}
& u_{x}=a b d e-a b d f+\cdots+b c d f \\
& u_{y}=a b f-a b e+\cdots+c d e \\
& u_{z}=a e-a d+\cdots+c f
\end{aligned}
$$

It is equal the line $\ell=\left[\ell_{x}: \ell_{y}: \ell_{z}\right]$ exactly when the 2×2 minors of the matrix

$$
\left[\begin{array}{lll}
u_{x} & u_{y} & u_{z} \\
\ell_{x} & \ell_{y} & \ell_{z}
\end{array}\right]
$$

are zero.

In this way, we get three ideals

$$
I_{1}, I_{2}, I_{3} \subseteq \mathbb{C}[a, b, c, d, e, f] .
$$

In this way, we get three ideals

$$
I_{1}, I_{2}, I_{3} \subseteq \mathbb{C}[a, b, c, d, e, f]
$$

Let $I=I_{1}+I_{2}+I_{3}$.

In this way, we get three ideals

$$
I_{1}, I_{2}, I_{3} \subseteq \mathbb{C}[a, b, c, d, e, f]
$$

Let $I=I_{1}+I_{2}+I_{3}$.

Throw away the 'bad' components to get a 'slimmer' ideal J.

In this way, we get three ideals

$$
I_{1}, I_{2}, I_{3} \subseteq \mathbb{C}[a, b, c, d, e, f]
$$

Let $I=I_{1}+I_{2}+I_{3}$.

Throw away the 'bad' components to get a 'slimmer' ideal J.

Now find the degree of J, which is the required number.

There are 77 cases modulo the action of the symmetric group on $\{A, B, \ldots, F\}$.

There are 77 cases modulo the action of the symmetric group on $\{A, B, \ldots, F\}$.

For example,

$$
\left\{\begin{array}{ccc}
A & B & C \\
F & E & D
\end{array}\right\},\left\{\begin{array}{lll}
A & B & D \\
E & C & F
\end{array}\right\},\left\{\begin{array}{ccc}
A & B & D \\
C & E & F
\end{array}\right\} \rightsquigarrow \mathbb{1} 4
$$

Galois covers

Motivating case:

$$
\left\{\begin{array}{ccc}
A & B & C \\
F & E & D
\end{array}\right\},\left\{\begin{array}{lll}
A & B & D \\
F & E & C
\end{array}\right\},\left\{\begin{array}{ccc}
A & E & D \\
F & B & C
\end{array}\right\} \rightsquigarrow 2
$$

We can find a formula for the two solutions (A, B, \ldots, F).

Galois covers

Motivating case:

$$
\left\{\begin{array}{ccc}
A & B & C \\
F & E & D
\end{array}\right\},\left\{\begin{array}{lll}
A & B & D \\
F & E & C
\end{array}\right\},\left\{\begin{array}{ccc}
A & E & D \\
F & B & C
\end{array}\right\} \rightsquigarrow 2
$$

We can find a formula for the two solutions (A, B, \ldots, F).

Problem: In the remaining cases, find the Galois group of the corresponding cover.

The Steiner case

We have

$$
\left\{\begin{array}{ccc}
A & B & C \\
F & E & D
\end{array}\right\},\left\{\begin{array}{ccc}
A & B & C \\
E & D & F
\end{array}\right\},\left\{\begin{array}{ccc}
A & B & C \\
D & F & E
\end{array}\right\} \rightsquigarrow 0
$$

because the Pascal lines are concurrent.

The Steiner case

We have

$$
\left\{\begin{array}{ccc}
A & B & C \\
F & E & D
\end{array}\right\},\left\{\begin{array}{lll}
A & B & C \\
E & D & F
\end{array}\right\},\left\{\begin{array}{lll}
A & B & C \\
D & F & E
\end{array}\right\} \rightsquigarrow 0
$$

because the Pascal lines are concurrent.

Fix three concurrent lines $\ell_{1}, \ell_{2}, \ell_{3}$. Then the solutions (A, B, \ldots, F) move on a curve X such that

$$
X \longrightarrow \mathbb{P}^{1}
$$

is a branched cover of degree 7 .

The Steiner case

We have

$$
\left\{\begin{array}{ccc}
A & B & C \\
F & E & D
\end{array}\right\},\left\{\begin{array}{lll}
A & B & C \\
E & D & F
\end{array}\right\},\left\{\begin{array}{lll}
A & B & C \\
D & F & E
\end{array}\right\} \rightsquigarrow 0
$$

because the Pascal lines are concurrent.

Fix three concurrent lines $\ell_{1}, \ell_{2}, \ell_{3}$. Then the solutions (A, B, \ldots, F) move on a curve X such that

$$
X \longrightarrow \mathbb{P}^{1}
$$

is a branched cover of degree 7 .

What is the geometry of X ?

The intersection ring

The intersection ring

The Pascal construction gives a rational map

$$
\text { conic }^{6}-\rightarrow \mathbb{P}^{2} .
$$

The indeterminacy scheme is a union of diagonals.

The intersection ring

The Pascal construction gives a rational map

$$
\text { conic }^{6}-\rightarrow \mathbb{P}^{2} .
$$

The indeterminacy scheme is a union of diagonals.

- Blow it up to get a morphism

$$
\Sigma \longrightarrow \mathbb{P}^{2}
$$

- Find the intersection ring of Σ.
- Find the intersection ring of Σ.
- Find the codimension two cycles

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}
$$

inside Σ, and calculate their intersection product.

- Find the intersection ring of Σ.
- Find the codimension two cycles

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}
$$

inside Σ, and calculate their intersection product.

- The required number is the degree of this zero-cycle.
- Find the intersection ring of Σ.
- Find the codimension two cycles

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}
$$

inside Σ, and calculate their intersection product.

- The required number is the degree of this zero-cycle.

Thank You!

