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Pascal’s Theorem

The Pascal line is denoted by

{
A B C
F E D

}
.



The same six points give several different lines such as{
B A F
C D E

}
,

{
F A C
D E B

}
, etc.

Altogether we get 6!
2×3! = 60 Pascal lines.

Points (A, B, . . . , F) on a conic  60 lines in the plane

Can we go backwards?
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6 points on a conic
⇒ both depend on 6 parameters

3 lines in a plane

Can we pre-specify 3 Pascal lines and look for the original 6
points?
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Can we find points (A, B, . . . , F) such that{
A B C
F E D

}
,

{
F A C
D E B

}
,

{
E B C
F D A

}

respectively correspond to green, red and purple lines?
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We expect a FINITE number of solutions.

The Computation

Fix the conic: x z = y2.

Fix an isomorphism

P1 ∼−→ conic, a −→ [1 : a : a2] = A.
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Then the Pascal line

{
A B C
F E D

}
has homogeneous

coordinates
ux = abde− abdf + · · ·+ bcdf ,

uy = abf − abe + · · ·+ cde,

uz = ae− ad + · · ·+ cf .

It is equal the line ` = [`x : `y : `z] exactly when the 2× 2
minors of the matrix [

ux uy uz

`x `y `z

]
are zero.
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In this way, we get three ideals

I1, I2, I3 ⊆ C[a, b, c, d, e, f ].

Let I = I1 + I2 + I3.

Throw away the ’bad’ components to get a ’slimmer’ ideal J.

Now find the degree of J, which is the required number.
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There are 77 cases modulo the action of the symmetric group
on {A, B, . . . , F}.

For example,

{
A B C
F E D

}
,

{
A B D
E C F

}
,

{
A B D
C E F

}
 14
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Galois covers

Motivating case:{
A B C
F E D

}
,

{
A B D
F E C

}
,

{
A E D
F B C

}
 2

We can find a formula for the two solutions (A, B, . . . , F).

Problem: In the remaining cases, find the Galois group of the
corresponding cover.
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The Steiner case

We have{
A B C
F E D

}
,

{
A B C
E D F

}
,

{
A B C
D F E

}
 0

because the Pascal lines are concurrent.

Fix three concurrent lines `1, `2, `3. Then the solutions
(A, B, . . . , F) move on a curve X such that

X −→ P1

is a branched cover of degree 7.

What is the geometry of X?
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The intersection ring

The Pascal construction gives a rational map

conic6 − → P2.

The indeterminacy scheme is a union of diagonals.

• Blow it up to get a morphism

Σ −→ P2.
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• Find the intersection ring of Σ.

• Find the codimension two cycles

Λ1, Λ2, Λ3

inside Σ, and calculate their intersection product.

• The required number is the degree of this zero-cycle.

Thank You!
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