Number theory and cryptography

HW 2

The notation is as used in the class or the book.

1. Suppose you are using the RSA scheme to receive messages, using \(p = 1733 \) and \(q = 2347 \).
 (a) Check that \(e = 31 \) is a valid encryption key.
 (b) Suppose you make the key \(e \) and the product \(pq \) public, and someone sends you the encrypted number 3436451. What is the decrypted number (i.e., the original number)?

2. Check if 3127 is a pseudoprime to the base 2. Does the test tell you whether 3127 is prime or composite?

3. Check if 561 is a pseudoprime to the base 2. Does the test tell you whether 561 is prime or composite? If not, try the Miller-Rabin test to the base 2 again. What does this test tell you?

4. (Problem V.3.5 in the book, p. 153) Let \(n = 2701 \). Use the \(B \)-numbers \(52^2 \) and \(53^2 \) mod \(n \) for a suitable factor-base \(B \) to factor 2701.

To do the calculations, you may use:

Wolfram alpha:
go to http://www.wolframalpha.com/
You can enter whatever you want to calculate and press the “=” sign.
to do \(ab \mod m \), do \(a * b \mod m \);
to raise \(a \) to \(b \) modulo \(n \), type \(a^b \mod n \), e.g., \(3^{-1} \mod 49 \) to find the inverse of 3 modulo 49
to find the prime factorization of an integer \(a \), do \text{factor}(a)
to find gcd\((a,b) \), do \text{gcd}(a,b);

Maple:
You can type \? for help.
In maple, at the end of any command, you need to put a semicolon.
to do \(ab \mod m \), do \(a * b \mod m \);
to find the inverse of \(e \mod m \), do \(1/e \mod m \);
to do \(a^b \mod m \) quickly, do \(a \&^b \mod m \);
to factor an integer \(a \), do \text{ifactor}(a);
to find gcd\((a,b) \), do \text{igcd}(a,b);
to avoid noting down and entering numbers, you can use variables.
For example: \(x = a * b \mod m \);
to quit: \text{quit};