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1 Introduction

Let F' be a number field and let £/ be an elliptic curve over F' of conductor an ideal N of F. We
assume throughout that F'is totally real: in that case, it is known, under minor hypotheses, that
there is a newform f of weight 2 on I'g(/V) over F' whose L-function coincides with that of F (see,
e.g., [Zha01] or [Dar04, §7.4]). We fix a quadratic extension K/F. When K is totally complex,
a classical theory produces a family of Heegner points of E, defined over ring class fields of K.
The Galois action on them is given by a Shimura reciprocity law, and their heights relate to the
derivative of the L-function of F over K at 1 (see, e.g., [Zha0l] or [Dar04, §7.5]).

We assume therefore from now on that K has at least one real place. The goal of the theory
of Darmon points (earlier called Stark-Heegner points) is to extend to such K the construction of
Heegner points. In [Dar01], Darmon started the theory in the case F' = Q and K a totally real
quadratic field. In [Gre09], Greenberg generalizes this work to give a conjectural construction of
points in the case where F' is arbitrary totally real quadratic field of narrow class number one, FE
is semistable, N # (1), the sign of the functional equation of E over K is —1, there is a prime
dividing the conductor of E that is inert in K, and the discriminant of K is coprime to N. The
techniques used are p-adic in nature. In [Garll], Gartner generalizes the work of [Dar04, Chap §]
and [DLO3] to give a construction of what he calls Darmon points in certain situations using
archimedian techniques. The conditions under which Gartner’s construction works are a bit too
technical to describe here, but we shall describe them in Section 2.1. All the constructions share
a basic outline: one computes an archimedean or p-adic integral of the modular form associated
to F/F, and plugs the resulting value into a Weierstrass of Tate parametrization of E to produce
the Darmon point.

Let O C K be an Op-order such that Disc(O/OpF) is coprime to N. In this article, we show
that if the sign of the functional equation of E over K is —1, the discriminant of K is coprime to N,
and the part of N divisible by primes that are inert in K is square-free, then one can apply either
the construction of Gartner or the construction of Greenberg (after removing the assumption that
F has narrow class number one, which we show how to do) to conjecturally associate to O a
point that we call a Darmon point (actually there are choices in the construction, and so one gets
several Darmon points). This point is intially defined over a transcendental extension of K, but
we conjecture that the point is algebraic, defined over the narrow ring class field extension of K
associated to the order O. This point comes with an action of the narrow class group of O, and
we state a conjectural Shimura receprocity law for this action.

In Section 2 we recall and slightly modify the constructions of Greenberg and Gartner. In
Section 3 we show how one of the two constructions can be carried out under our hypotheses. We
assume throughout this article that the reader is familiar with [Gre09] and [Garll].
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2 The constructions of Gartner and Greenberg

In this section we discuss Gartner’s and Greenberg’s constructions. Gartner makes several assump-
tions that are sometimes not made explicit in [Garll]; we clarify what hypotheses are needed in
Gartner’s construction and also modify it a bit so that it can be unified better with Greenberg’s
construction. We also show how to generalize Greenberg’s construction to remove the class number
one assumption in [Gre09].

Both constructions require the existence of a suitable quaternion algebra B in order to use
the Jacquet-Langlands correspondence. So let B be a quaternion algebra over F. We will im-
pose certain assumptions that B (and other objects) will have to satisfy in each of Gartner’s or
Greenberg’s constructions. In Section 3 we shall explain when these assumptions are met.

First, in either construction, one needs an embedding of K into B. Recall that B is said to
be split at a place v of F' if B ®p F), is the matrix algebra, and ramified at v otherwise. It is
known that a quaternion algebra is determined up to isomorphism by the set of ramified places,
which is finite of even cardinality. Conversely, for any finite set of places of even cardinality there
is a quaternion algebra ramifying at these places. We say that a real place of F' splits in K if
there are two real places of K lying over it, and we say that it is inert otherwise (such a place
is usually said to be ramified, but we prefer to call it inert to avoid confusing ramification in K
with ramification of B).

Assumption A: Assume that there is an embedding of ¢ : K < B, i.e., that each place where B
ramifies, archimedean or not, is inert in K.

2.1 Gartner’s construction

We now outline the construction of Gartner, along with some modifications. For details and proofs
of the claims made below, please see [Garll]. We try to use notation consistent with or similar to
that in [Garll] as much as possible.

We start by listing the assumptions used in Gartner’s construction. Let d denote the degree
of F' over Q and let 7, ..., 74 denote the archimedian places of F.

Assumption B1: Suppose that there is exactly one archimedian place of F' where B is split but
which does not split in K.

Without loss of generality, assume that the archimedian place of F' where B is split but which
does not split in K is 7;. Let r be the integer such that the archimedian places of F' that split
in K are 79,...,7; since K is not a CM field, » > 2. By our Assumption A, B necessarily splits
at T, ..., Ty and by Assumption B1, it necessarily ramifies at 711,..., 74

If S is a ring, then let S denote S ®z Z. Let R be an Eichler order of B.

Assumption B2: Assume that f corresponds to an automorphic form on R under the Jacquet-
Langlands correspondence.

Let b € BX. Let O C K be an Op-order such that Disc(O/OF) is coprime to N. In order
to get a Darmon point in the narrow class field associated to the order O, along with an action
of Pic(O)*, we make the following assumption (which is not made in [Garl11]):



Assumption B3: Suppose that q(K) N bRV ! = q(0), i.e., that ¢ is an optimal embedding of O
into the order B NbRb!.

We now start the construction. Let G = Resp/qB™ and let Ay denote the set of finite adeles

over Q. Let H = R* and let Sh(G) denote the quaternionic Shimura variety whose complex
valued points are given by G(Q)\(C \ R)" x G(Ay)/H. Let b € BX. Let T = Resg/q(Gm)-
The embedding ¢ induces an embedding of T in G that we again denote by ¢ for simplicity.
Using the embeddings associated to 71, ..., 7., where B splits, we get a natural action of ¢(T'(R)")
on X = (C\R)". Let T° be a fixed orbit of ¢(T(R)") whose projection to the first component
of X is a point (recall that 7 is a complex place); we fix this point henceforth and denote it by z;.
Let Ty, denote the projection to Shy(G)(C) = G(Q)\(C\R)" x G(Ay)/H of T° x G(Ay).Then
Ty is a torus of dimension r — 1.Note that our torus corresponds to the torus denoted 77)0 in
Section 4.2 of [Garl1]; moreover Gartner actually works with a modified Shimura variety denoted
Shy(G/Z, X) in loc. cit. However, the construction goes through mutatis mutandis with Shy (G)
as well, which is what we shall do in this article. Thus our construction is a slightly modified
version of that of Gartner. We are doing this modification to get a version of the (conjectural)
Shimura receprocity law that is similar to that of Greenberg (Conjecture 3 in [Gre09]). Using
the theorem of Matsushima and Shimura [MS63], one shows that there is an r-chain that we
denote A, (called Ay in [Garll]) on Shy(G) whose boundary is an integral multiple of T} ;. This
uses Proposition 4.5 in [Garll], whose proof assumes that the Shimura variety is compact, i.e.,
that B is not the matrix algebra. If B is the matrix algebra, then we are in the ATR setting dealt
with in [Dar04, Chap. 8] and [DLO03]; thus in this article, we are subsuming the ATR construction
under Gartner’s construction(in fact, Gartner’s work was motivated by the ATR construction).
Let ¢ denote the automorphic form on H corresponding to f under the Jacquet-Langlands
correspondence (recall our Assumption B2). Analogous to the construction of the form denoted w?
in [Garl1], we get a form that we denote wy on Shy (G) by taking f to be the trivial character (we
could allow 3 to be an aribitrary character, but we are taking it to be the trivial character for the
sake of simplicity and also to get an action of the narrow class group below). Assuming conjectures
of Yoshida [Yos94], the periods of wy form a lattice that is homothetic to a sublattice of the Neron
lattice A of E. Then the image of a suitable integer multiple of [ DgyWo is independent of the

choice of the chain A, , made above. Let ® : C/Agp — E(C) denote the Weierstrass uniformization
of E. Then the Darmon point P, in E(C) is defined as a suitable multiple of the image of [, , Wo
q,

under ® (our point corresponds to the point Pbﬁ in [Garll]). It is conjectured that the point P,
in E(C) has algebraic coordinates.

Let §: K — B denote the map obtained from ¢ by tensoring with F. Let K A denote the ring
of adeles of K. Denote by ay the non-archimedean part of a € K. Following Gartner, we define
an action of K5 on Darmon points Py by

ax* Pyp = Plggasb)-

An easy check shows that the new pair satisfies Assumption B3.

Denote by K. the subset of elements of K that are positive in all real embeddings. As
usual, K is embedded into K, diagonally. We claim that the action above factors through
O*(K ®q R)* KX, i.e., we have an action of @X\KA/(K ®q R)* K3, which is the narrow class
group Plc(O)Jr To prove the invariance under the action of (9 note that by our condition above,
q(O) CbR*b™!, soif a € O, then qlay) = brb~! for some r € R. Hence q(as)b=brb='b = br, and

80 ax Pyp = Pg ) = Pyp since R acts trivially on Shg(G). Next (K ®@qR)™ clearly acts trivially.



It remains to show invariance under the action of K. If k € K, then k « Py) = Py gy Let
zo € TY. Then T, 4k consists of images of points of the form (y,q(k)b) in (C\ R)" x G(Ay)
such that y = tz for some t € ¢(T(R)?). Letting 7 denote the projection map from (C\ R)" x
G(Af) to Shu(G)(C) = G(Q\(C \ R) x G(A)/H, we have m(y,q(k)b) = n((tzo, q(k)b) =
7(q(k~Y)txo,b) = m(tq(k~)x0,b), as elements of ¢(K) commute. Thus the point Pk 18
obtained from the orbit with base point ¢(k~!)zg. Recall that the projection of q(T(R)?) to the
first component of X is a point 21, and thus z; is fixed by ¢(K). In particular, the projection of
the orbit of the point g(k~!)xo to the first component of X is again z;. Moreover the projections
of the orbits of the point q(k~')zg and of the point g lie in the same connected component of
each copy of C\ R in X since k € K. In view of the last two sentences in [Garll, Prop 4.7],
Py kyp) = Pg,p)> which finishes our proof of the claim.

Thus we get an action of the narrow class group Pic(O)* on Darmon points P, ;; we denote
this action again by .

Conjecture 2.1. The point P,y is defined over the narrow ring class field extension K(Jg of K
associated to the order O. If a € Pic(O)T, then rec(a)(P,p) = a * Py, where rec : PictO —
Gal(K(Jg/K) is the reciprocity isomorphism of class field theory.

The following assumption is not needed for Gartner’s construction, but we shall mention it
since it will be useful in Section 3 (see also Remark 3.2(i)).

Assumption B4: Suppose that the finite primes where B is ramified are exactly the primes that
divide NV and are inert in K.

2.2 Greenberg’s construction

We now discuss the construction of Greenberg, and show how to remove assumption that F has
class number one made in [Gre09]. For details of the construction, please see [Gre09]. We start
by listing the assumptions needed. Recall that d denotes the degree of F' over Q and 74,...,7y4
denote the archimedian places of F. Since K is not CM, there is at least one infinite place of F
that splits in K. Let n denote the number of such places, and without loss of generality, assume
that these places 7,...,7, (in the previous section, we wrote r instead of n; we change notation
to be consistent with or similar to that in [Gre09] as much as possible). By Assumption A, B is
split at 71,...,7, and can be ramified or split at 7,41, ...,75. However we insist:

Assumption C1: Suppose that 7,11, ..., 74 are precisely the infinite primes where B ramifies.
Assumption C2: Suppose that there is a prime ideal p of F' that exactly divides N and is inert in K.

Assumption C3: Suppose that the part of IV divisible by primes that are inert in K is square-free
and that the finite primes where B is ramified are exactly the primes other than p that divide N
and are inert in K.

Let n be the part of N supported at primes other than p that divide N and where B is split.
For each ideal a of O coprime to the discriminant of B, choose an Eichler order Ry(a) in B of
level a as in [Gre09, §2]. Let R = Ry(n) be the Eichler order in B of level n. As in Section 2.1, we
choose b € BX and impose the analog of Assumption B3:



Assumption C4: Suppose that q(K)n bRb! = q(0), i.e., that ¢ is an optimal embedding of O
into the order B NbRb!.

We remark that the assumptions made above are not exactly the assumptions made in [Gre09],
but suffice for the construction (e.g., the assumption made in [Gre09] that the sign of the functional
equation of F over K is —1 is used to show that a quaternion algebra B satisfying Assumptions C1
and C3 exists).

We now describe the construction. As in Section 2.1, let G = Resp/qB™, let H = EX,
and let Shy(G) denote the quaternionic Shimura variety whose complex points are given by
G(Q\(C\ R)" x G(Ay)/H, where n is the number of real places of F' where B splits (n is
the same as the 7 in Section 2.1). Let G(R)" denote the identity component of G(R) and let
G(Q) = GR)NGQ). Let C C B* be a system of representatives of the double cosets
G(Q)\B*/H. If g € B*, then let I = gHg ' nG(Q)° € GR)" and let I'y denote the
natural projection of the image of F; in PGL; (R)™ (the projection is obtained via the embeddings
associated to the places 71,...,7, where B splits). Let $), denote the upper half plane. Then
Shy(G)(C) is homeomorphic to the disjoint union of I'y\($),)™ as g ranges over elements of C.
Greenberg assumes that the narrow class number of F' (and therefore of B) is one, in which case C'
is a singleton set and I'y = I'g(n). Greenberg’s construction uses group homology and cohomology
for the group I'g(n) with coefficients in various modules. When the narrow class number is not
one, one has to replace the homology groups of I'y(n) with the direct sum over g € C of the
homology groups of I'y.

As in Section 2.1, we construct the torus T, ; in Shg(G). The inclusion of the torus in Shy (G)
induces a map on the corresponding n-th homology groups. The image under this map of a
generator of the n-th homology group of the torus gives an element of the n-th homology group
of Shy(G)(in fact, since the torus is connected, that element lies in one of direct summands in the
homomlogy); this element replaces the element denoted Ay starting with Lemma 21 in [Gre09]
(note that in loc. cit., before Lemma 21 , Ay is considered to be an element of a homology
group of I'g(n)y, but starting with Lemma 21, Ay, is considered to be an element of a homology
group of I'g(n)). Greenberg also uses homology groups of I'g(n) with coefficients in a module
denoted Div 7—[‘? in loc. cit.; here, 7—[‘? denotes a certain set of points, one corresponding to each
optimal embedding of O in R (see page 561 of loc. cit. for details). To generalize this construction,
for each g € C, we define ”Hg?g to be the analogous set of points, which is in bijection with the set of
optimal embeddinga of O in BN gég_l. Then the homology groups H;(I'g(n), Div ’Hf ) get replaced
by ®gecH;(T'y, Div ’Hg g). On the group cohomology side, Greenberg considers cohomology groups
of the groups I'g(n) and Ig(pn). The cohomology groups of I'g(n) again get replaced by the direct
sum as g € C of the cohomology groups of I'y, and the cohomology groups of I'g(pn) get replaced
similarly by taking R = Ry(pn) (these replacements are especially needed to have the analog of
Corollary 14(2) of [Gre09], where the narrow class number assumption was used implicitly).

As usual, let K, denote the completion of K at p. With the changes above, the construction
of Greenberg goes through mutatis mutandis to give a point in E(K,) that we again denote P,
(it is denoted Py in [Gre09], where b = 1). Note that while we are using the same notation Py
as in Section 2.1, it should be clear from the context which point we mean depending on which
construction is used. We remark that for his construction, Greenberg assumes an analog of the
conjecture of Mazur-Tate-Teitelbaum (conjecture 2 on p. 570 of loc. cit.), and we have to do the
same. Just as in [Gre09], one has an action of Pic(O)" on optimal embeddings of O in bﬁxb_l,
and thus on P, ;; we denote this action by * again.

Conjecture 2.2. The point P,y is defined over the narrow ring class field extension K(Jg of K



associated to the order O. If a € Pic(O)*, then rec(a)(P,p) = «a x Py, where rec : PictO —
Gal(K(Jg/K) s the reciprocity isomorphism of class field theory, as before.

Note the similarity of the conjecture above to Conjecture 2.1.

3 Choosing a suitable quaternion algebra

Let G1 denote the set of assumptions A, B1, B2, B3, and B4, and let G2 denote the set of assump-
tions A, C1, C2, C3, and C4. If G1 is satisfies, we can carry out the construction of Gartner (as
described in Section 2.1); if G2 holds, the construction of Greenberg (as described in Section 2.2)
works.

Theorem 3.1. (i) Suppose that N is square-free. If either G1 or G2 hold, then the sign in the
functional equation of E over K is —1.

(ii) Suppose that the sign in the functional equation of E over K is —1 and the part of N divisible
by primes that are inert in K is square-free. Then:

(a) If there is an archimedian place of F' that is inert in K (i.e., K is not totally real), then one
can find a quaternion algebra B and an Eichler order R such G1 holds, i.e., one can carry out
the construction of Gartner (as described in Section 2.1; assuming the conjectures made in the
construction).

(b) If there is a prime dividing N that is inert in K, then one can find a quaternion algebra B
and an Eichler order R such G2 holds, i.e., one can carry out the construction of Greenberg (as
described in Section 2.2; assuming the conjectures made in the construction).

(c) One can find a quaternion algebra B and an Eichler order R such that either G1 or G2 hold,
i.e., one can carry out either the construction of Gartner (as described in Section 2.1) or the
construction of Greenberg (as described in Section 2.2) to construct a Darmon point (assuming
the congjectures made in the constructions).

Note that if the sign in the functional equation is —1, then the Birch and Swinnerton-Dyer
conjecture predicts that rank E(K) > 1. If the rank is exactly 1, the Gross-Zagier formula would
lead one to expect that (the trace to E(K) of) the Darmon point has infinite order.

In the rest of this section, we shall prove Theorem 3.1. To carry out the construction of
Gartner or Greenberg, we need to find a suitable quaternion algebra B and an Eichler order R so
that all the assumptions made in the construction are satisfied. We first list the restrictions, and
then show when they can be met. The requirements are as follows:

(i) Suppose that Assumption A holds: there is an embedding of K in B. This happens if and only
if each ramified place of B is inert in K. Let rg denote the number of real places of F' where B
ramifies and r; the number of real places where B is split but that are inert in K. The subscript
thus indicates which of B and K is non-split, with the understanding that we write r5 instead of
rp.x since B being non-split implies K is non-split.

(ii) Given K, the quantity r5 + 7 is decided, since it is the number of real places of F' that are
not split in K.

(iii) In Gartner’s construction, Assumption Bl says that r, = 1, while for Greenberg’s con-
struction, Assumption C1 says that r, = 0 (see the statements just before the statement of
Assumption C1).



In either construction, one needs an Eichler order R C B in order to apply the Jacquet-
Langlands correspondence. Let N~ denote the (finite part of the) discriminant of B, which is
square-free by definition. Let N* and N’ be ideals of Op such that N=, N’ and N* are pair-
wise relatively prime. Let R be the Eichler order of B of level NTN’, and put FOB (NTN') =
ker(n : R* — F*). The Jacquet-Langlands correspondence then says that So(TE(NTN')) =
Sy(To(NTN'N7))N" =" as modules over the Hecke algebra T = C[{Ty}un+n/n-: {Up}tpin+]
(the indices ¢ and p are ideals in F'). The form associated to E is in Sy(I'g(V)), so we get the
following conditions on the level of the modular form and the discriminant of B:

(iv) There is a factorization N = N*N’'N~ into three pairwise coprime ideals. Here N~ is square-
free and divisible only by primes which are inert in K (as N~ is to serve as the discriminant ideal
of B, the second assumption is necessary to satisfy (i)). In Greenberg’s construction, N~ is the
part of N divisible by primes other than p that are inert in K, and we take N’ = p. Such a
factorization exists by Assumption C3. In Gartner’s construction, N~ is the product of all prime
divisors of N that are inert in K, and N’ = 1.

(v) By (i) and (iv), one sees that the (finite) primes where B is allowed to ramify divide N. Let f5
denote the number of primes dividing N where B is ramified and f, the number of primes dividing
N where B splits but that are inert in K. Similar to (ii), given K and N, the quantity fz + fx is
independent of B, since it is the number of primes of F' dividing N that are inert in K (recall that
we are assuming that N is coprime to the discriminant of K, so no prime dividing N ramifies in K).

(vi) In Gartner’s construction, by the extra Assumption B4, fx = 0, while in Greenberg’s con-
struction, fx = 1 by Assumptions C2 and C3.

(vii) The total number of places where B ramifies is even, so 75 + fp has to be even. And con-
versely, if 5 + fp is even then a B exists (ignoring the other conditions).

(viii) Let R, = BN bRb™. One needs the existence of an optimal embedding © < R;, (Assump-
tion B3 for Gartner’s construction and Assumption C4 in Greenberg’s construction). Such an
embedding exists if and only if it exists everywhere locally ([Vig80] II1.5.11), which happens if and
only if all the primes dividing N~ are inert in K ([Vig80] I1.1.9), and all the primes dividing N*
are split in K ([Vig80] sentence after 11.3.2). In (iv), we already had the requirement that all the
primes dividing N~ are inert, so the only new requirement is that all the primes dividing N are
split. This requirement is already met in Greenberg’s construction (see (iv) and Assumption C3).

We now prove part (i) of Theorem 3.1. Combining (iii) and (vi), in either construction,
rx + fx = 1, which combined with (vii) implies that rz+7rx+ fs+ fx is odd. But rg+7rx+ fp+ fx
is precisely the total number of places of K where E has a Weierstrass or Tate parametrization,
which in turn is the exponent of —1 in the sign of the functional equation of the L-function of F.
Thus the sign in the functional equation has to be —1. This proves part (i) of Theorem 3.1.

We next prove part (ii) of Theorem 3.1. We shall give two proofs of part (c). In the first
proof, we first try to see if the assumptions for Gartner’s construction are satisfied, and if not,
we show that the assumptions for Greenberg’s construction hold. In the second proof, we reverse
the process: we first try to satisfy the assumptions for Greenberg’s construction, and if we can’t,
we show that the assumptions for Gartner’s construction are satisfied. In the process of proving
part (c), we will prove parts (a) and (b).



Proof. (Proof 1 of part (c) and proof of part (a)) We first show that if K is not totally real, then
we can apply Gartner’s construction; this will prove part (a). We start with the set of all B’s and
R’s and we will impose restrictions on this set to satisfy (i)—(viii) (for Gartner’s construction).
The main point is that as we impose the restrictions one by one, at each stage, there should be a
choice of B and R left. Most of the restrictions in (i)—(viii) are about ramification of B at various
places. Now a quaternion algebra with specified ramifications at different places exists if and only
if the number of places where it is ramified is even, which is condition (vii). We impose (i), and
since (vii) can be satisfied while (i) holds, we have quaternion algebras B satisfying (i) (this sort
of argument will be used over and over again below, so we will not repeat the justification we gave
in this sentence). Now the number of real places of F' that are inert in K is 5 +7x, and so rz+ 7
is non-zero by our hypothesis. While r5 + 7 is decided by (ii) (independent of the B’s), we can
restrict to B’s such that 7, = 1 (so that (iii) is satisfied) and let r5 be decided by (ii). Next we
restrict to the B’s for which fr = 0 (so that (vi) is satisfied) and let fz be whatever it has to be
according to (v); however, at this point, we have to check (vii): we cannot choose rz and fz both
freely since their sum has to be even. Now 7 + 75+ fx + f5 = 1+ 75+ 0+ f5 is odd (this parity
depends only on the sign of the functional equation of L(E K s), hence is independent of the B’s),
so 15+ fp is even, and (vii) is satisfied, and we are OK. Thus we can take N~ to be the part of N
divisible by primes that are inert in K and restrict to those B’s for which the nonarchimedian
places where B ramifies are precisely the ones dividing N~ (here we are using the hypothesis that
the part of N divisible by primes that are inert in K is square-free). We take N = N/N~, so
that (iv) and (viii) are satisfied (note that N’ = 1) and choose an order R of level N™. Thus we
can find a B and an R for which (i)—(viii) are satisfied for Gartner’s construction.

If K is totally real, then we claim that we can apply Greenberg’s construction. We start
with the set of all B’s and R’s and impose (i). By (ii), rx + 75 = 0, so rx = rp = 0, and (iii)
is satisfied (for Greenberg’s construction). Now fx + fz = 74 + 15 + fx + f5 is odd, and in
particular, non-zero. So we may restrict to B’s such that fx = 1 (then (vi) is satisfied) and let
fs be whatever it needs to be to satisfy (v) (fz will be even). Again, at this point, we have to
check that there are B’s left satisfying the conditions above since by (vii), r5 + f5 has to be even;
but this is true since rz = 0 and fz is even as mentioned above. Thus we take a prime p that
divides N and is inert in K, and let N~ be the product of all primes except p that divide N and
are inert in K (here we are using the hypothesis that the part of N divisible by primes that are
inert in K is square-free). We take N’ = p, N = N/(N~p) so that (viii) is satisfied. Also, as
mentioned above, (iv) is automatic for Greenberg’s construction. Thus we can find a B and an R
for which (i)—(viii) are satisfied for Greenberg’s construction. O

Proof. (Proof 2 of part (c) and proof of part (b)) We first show that if IV is divisible by a prime that
is inert in K, then we can apply Greenberg’s construction; this will prove part (b). As in Proof 1,
we start with the set of all B’s and R’s and we impose restrictions on this set to satisfy (i)—(viii)
(for Greenberg’s construction). The main point is that as we impose the restrictions one by one,
at each stage, there should be a choice of B and R left. Most of the restrictions in (i)—(viii) are
about ramification of B at various places. Now a quaternion algebra with specified ramifications
exists if and only if the number of places where it is ramified is even, which is condition (vii).
We impose (i), and since (vii) can be satisfied while (i) holds, we have quaternion algebras B
satisfying (i) We pick a prime p such that p|/N and p is inert in K. We restrict to the B’s such
that the (finite) primes where B is ramified is precisely the set of primes except p that divide N
and are inert in K. Thus N~ is the product of all primes except for p that divide N and are
inert in K. (so (v) is satisfied). We take N* = N/N~p and N’ = p; then (iv), (vi), and (viii) are
satisfied (here we are using the hypothesis that the part of N that is divisible by primes that are



inert in K is square-free). We further restrict to the B’s such that r, = 0 (so that (iii) is satisfied)
and let r5 be decided by (ii); however, at this point, we have to check (vii): we cannot choose 75
and fz both freely since their sum has to be even. Now rx + 75+ fx + fs =0+ 715+ 1+ f5 is
odd (this parity depends only on F and K, and is independent of the B’s), so r5 + f5 is even,
and (vii) is satisfied. Thus (i)—(viii) are satisfied for Greenberg’s construction.

If the part of N divisible by primes that are inert in K is empty, then by (v), fx = f5 =0
(so (vi) is satisfied for Gartner’s construction), and we restrict to B’s that are not ramified at
any (finite) prime (so N~ =1). Now rx + 75 = rx + 75 + fx + fs is odd by hypothesis, hence
non-zero. We restrict to B’s such that rx = 1 (so that (iii) is satisfied) and let rp be decided
by (ii) (rp will be even). Again, at this point, we have to check that there are B’s left satisfying
the conditions above since by (vii), r5 + f5 has to be even; but this is true since fp = 0 and 75 is
even as mentioned above. We then take N~ = N’ = 1, and N* = N, so that (iv) and (viii) are
satified. Thus (i)—(viii) are satisfied for Gartner’s construction. O

Remark 3.2. (i) We made Asssumption B4 in Gartner’s construction (Section 2.1) in order to get
part (i) of Theorem 3.1. Also, this assumption is a natural choice to be made in the construction
anyway. If Assumption B4 is dropped, then part (ii) of Theorem 3.1 is still true, and in particular,
if the sign in the functional equation is —1 and the part of N divisible by primes that are inert
in K is square-free, then one can carry out either the construction of Gartner or the construction
of Greenberg to construct a Darmon point.

(ii) There were choices for the quaternion algebra B and the Eichler order R in what we did
above for the proof of part (ii) and there may be other ways of applying Greenberg’s or Gartner’s
constructions than what we did. Also, if the sign in the functional equation is —1 and the part
of N divisible by primes that are inert in K is square-free, and there is at least one real place and
one prime dividing N that are inert in K, then either of Greenberg’s or Gartner’s constructions
can be carried out (by the first paragraphs of Proofs 1 and 2). It would be interesting to see if
and how the Darmon points one gets by different choices (when available) are related.
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