The Birch and Swinnerton-Dyer conjectural formula for modular abelian varieties *

Amod Agashe
University of Texas, Austin

October 10, 2002

*These slides can be obtained from http://www.ma.utexas.edu/users/amod/mymath.html

Abstract: The Birch and Swinnerton-Dyer conjectural formula relates a special value coming from the L-function of an abelian variety A to certain arithmetic invariants of A. We give a formula for the ratio of this special value to the real volume of A for certain quotients of $J_0(N)$, and give numerical and theoretical evidence for the conjecture using this formula.

The Birch and Swinnerton-Dyer conjectural formula

Let

$$J_0(N) = ext{Jacobian of the modular curve } X_0(N),$$
 $T = ext{Hecke algebra},$
 $f = ext{a newform},$
 $I_f = ext{Ann}_T f$, an ideal of T , and
 $A = A_f = ext{J}_0(N)/I_f J_0(N),$
the Shimura quotient associated to f .

Conjecture 1 (Birch, Swinnerton-Dyer, Tate).

If $L(A,1) \neq 0$, then

$$\frac{L(A,1)}{\Omega(A)} = \frac{\# \coprod (A) \cdot \prod_{p|N} c_p(A)}{\# A(\mathbf{Q}) \cdot \# A^{\vee}(\mathbf{Q})},$$

where

$$\Omega(A)$$
 = volume of $A(\mathbf{R})$ w.r.t.
Néron differentials,

$$III(A)$$
 = Shafarevich-Tate group of A , and $c_p(A)$ = order of the arithmetic component group of A at p .

A formula for $L(A,1)/\Omega(A)$

Theorem 2.

$$\frac{L(A,1)}{\Omega(A)} = \frac{\left[\Phi(H_1(X_0(N),\mathbf{Z})^+) : \Phi(\mathbf{T}e)\right]}{c_A \cdot c_\infty(A)},$$

where the terms are as follows:

Let
$$f_1, f_2, \ldots, f_d =$$
 Galois conjugates of f .
Then $\Phi: H_1(X_0(N), \mathbf{Q})^+ \to \mathbf{C}^d$ is given by $\gamma \mapsto \{\int_{\gamma} f_1, \ldots, \int_{\gamma} f_d\}$.

We have

$$H_1(X_0(N), \mathbf{R}) \stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\mathbf{C}}(H^0(X_0(N), \Omega^1), \mathbf{C})$$
 given by $\gamma \mapsto \omega \mapsto \int_{\gamma} \omega$
Definition: $e \leftrightarrow \omega \mapsto -\int_{\{0,i\infty\}} \omega$

Manin-Drinfeld \Rightarrow Te $\subseteq H_1(X_0(N), \mathbf{Q})^+$.

$$\Phi(H_1(X_0(N), \mathbf{Z})^+), \ \Phi(\mathbf{T}e) \subseteq \mathbf{R}^d$$
 are lattices; $[\Phi(H_1(X_0(N), \mathbf{Z})^+) : \Phi(\mathbf{T}e)] = \text{lattice index}.$

 $c_{\infty}(A) = \#$ of connected components of $A(\mathbf{R})$.

Let A = Néron model of A over \mathbf{Z} .

Definition 3. The generalized Manin constant of A, denoted c_A , is the index of $H^0(\mathcal{A}, \Omega_{\mathcal{A}/\mathbf{Z}})$ in $S_2(\Gamma_0(N), \mathbf{Z})[I_f]$.

Some remarks on the formula

$$\frac{L(A,1)}{\Omega(A)} = \frac{\left[\Phi(H_1(X_0(N),\mathbf{Z})^+) : \Phi(\mathbf{T}e)\right]}{c_A \cdot c_\infty(A)}.$$

- 1. Was conjectured by W. Stein.
- 2. Already known for elliptic curves (e.g., see Cremona).
- 3. Right-hand side of the formula above is a rational number and can be computed using rational arithmetic up to the constant c_A using modular symbols (rationality of $L(A,1)/\Omega(A)$ was already known).
- 4. Can be used to check if L(A, 1) = 0.
- 5. Can get information on the order of $\mathrm{III}(A)$ predicted by the Birch and Swinnerton-Dyer conjectural formula

$$\frac{L(A,1)}{\Omega(A)} \stackrel{?}{=} \frac{\# \coprod (A) \cdot \prod_{p|N} c_p(A)}{\# A(\mathbf{Q}) \cdot \# A^{\vee}(\mathbf{Q})},$$

up to knowledge of c_A (Stein).

6. We have good control on the primes dividing c_A :

Theorem 4 (Mazur, Stein).

If p is a prime that divides c_A , then either $p^2 | N$, or p = 2.

Some theoretical evidence for the Birch and Swinnerton-Dyer conjectural formula

Corollary 5 (AA, Stein). Suppose $L(A,1) \neq 0$. Let x be the image of $(0) - (\infty) \in J_0(N)(\mathbf{Q})$ in $A(\mathbf{Q})$ and let n be the order of x in $A(\mathbf{Q})$. Then

$$c_{\infty}(A) \cdot c_A \cdot \frac{L(A,1)}{\Omega(A)} \in \frac{1}{n} \mathbf{Z}.$$

In particular,

$$c_{\infty}(A) \cdot c_A \cdot \#A(\mathbf{Q}) \cdot \#A^{\vee}(\mathbf{Q}) \cdot \frac{L(A, 1)}{\Omega(A)} \in \mathbf{Z}.$$

Remarks:

1. The Birch and Swinnerton-Dyer conjecture predicts:

$$\#A(\mathbf{Q}) \cdot \#A^{\vee}(\mathbf{Q}) \cdot \frac{L(A,1)}{\Omega(A)} \in \mathbf{Z}.$$

2. $c_{\infty}(A)$ is a power of 2, and we have control on the primes dividing c_A (in particular, if N is a prime, c_A is a power of 2).

Computational evidence for the Birch and Swinnerton-Dyer conjectural formula

Proposition 6. Suppose $L(A, 1) \neq 0$.

Let p be a prime that does not divide the degree of the canonical polarization of A^{\vee} .

Then the order of the p-primary part of $\mathrm{III}(A)$ is a perfect square.

Theorem 7 (Mazur, Stein).

Suppose B is another Shimura quotient of $J_0(N)$ of Mordell-Weil rank > 0.

Let p be a prime such that $B^{\vee}[p] \subseteq A^{\vee}(\subseteq J_0(N)^{\vee})$. Then, under certain mild conditions, there is a non-trivial element of order p in $\coprod(A^{\vee})$. Hence, if $L(A,1) \neq 0$, then $p|\#\coprod(A)$.

Prime levels with $L(A, 1) \neq 0$ and $\# \coprod_{an}(A) > 1$ (Calculated by William Stein)

 $\# \coprod_{an}(A) = \text{order of the Shafarevich-Tate group}$ as predicted by the BSD formula. Warning: only odd parts of the invariants are shown.

\mathbf{A}	$\# \coprod_{an}(A)$	$\sqrt{deg(\phi_A)}$	В
389E	5 ²	5	389A
433D	7 ²	$3 \cdot 7 \cdot 37$	433A
563E	13 ²	13	563A
571D	3^2	$3^2 \cdot 127$	571B
709C	11 ²	11	709A
997H	3 ⁴	3^2	997B
1061D	151 ²	$61 \cdot 151 \cdot 179$	1061B
1091C	7^{2}	1	NONE
1171D	11 ²	$3^4 \cdot 11$	1171A
1283C	5 ²	$5 \cdot 41 \cdot 59$	NONE
2333C	83341 ²	83341	2333A

deg(ϕ_A) = degree of canonical polarization of A^{\vee} . **Example 8.** $7 \nmid \deg(\phi_{1091C}) \Rightarrow highest power of 7 dividing <math>\# \coprod (1091C)$ has even exponent. $B = \text{an optimal quotient of } J_0(N) \text{ such that } L(B,1) = 0 \text{ and if an odd prime } p \text{ divides } \# \coprod_{an}(A), \text{ then } B^{\vee}[p] \subseteq A^{\vee}.$ **Example 9 (Stein).** $5^2 \mid \# \coprod_{389E}$.