A generalization of Kronecker’s first limit formula to GL(n)

Amod Agashe

Florida State University
Department of Mathematics

November 3, 2019
For $\tau \in \mathbb{H}$, the upper half plane, let $y = \Im(\tau)$.

Define $E^*_{\text{2}}(\tau, s) = \pi - s \Gamma(s) \sum_{m_1, m_2} y s |m_1 \tau + m_2|^2$.

It converges when $\Re(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula says

$E^*_{\text{2}}(\tau, s) = \frac{1}{s - 1} + (\gamma - \log 4\pi - \log y - 4 \log |\eta(\tau)|) + O(s - 1),$

where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function.

Kronecker’s first limit formula has several applications; we mention one such next.
For \(\tau \in \mathcal{H} \), the upper half plane,
For $\tau \in \mathcal{H}$, the upper half plane, let $y = \Im(\tau)$,
For $\tau \in \mathcal{H}$, the upper half plane, let $y = \Im(\tau)$, and for $s \in \mathbb{C}$,
For $\tau \in \mathcal{H}$, the upper half plane, let $y = \Im(\tau)$, and for $s \in \mathbb{C}$, define $E^*_2(\tau, s) = \pi^{-s}\Gamma(s)\sum_{m_1, m_2} \frac{y^s}{|m_1\tau + m_2|^{2s}}$;
For $\tau \in \mathcal{H}$, the upper half plane, let $y = \Im(\tau)$, and for $s \in \mathbb{C}$, define $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m_1, m_2} \frac{y^s}{|m_1 \tau + m_2|^{2s}}$; it converges when $\Re(s) > 1$.
Classical Kronecker’s first limit formula

For $\tau \in \mathcal{H}$, the upper half plane, let $y = \Im(\tau)$, and for $s \in \mathbb{C}$, define $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m_1,m_2} \frac{y^s}{|m_1 \tau + m_2|^2s}$; it converges when $\Re(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula says $E_2^*(\tau, s) = \frac{1}{s-1} + \frac{(\gamma - \log 4\pi - \log y - 4 \log |\eta(\tau)|)}{s} + O(s-1)$, where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function.

Kronecker’s first limit formula has several applications; we mention one such next.
For $\tau \in \mathbb{H}$, the upper half plane, let $y = \Im(\tau)$, and for $s \in \mathbb{C}$, define $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m_1, m_2} \frac{y^s}{|m_1 \tau + m_2|^2s}$; it converges when $\Re(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$. The classical Kronecker’s first limit formula says
For $\tau \in \mathcal{H}$, the upper half plane, let $y = \Im(\tau)$, and for $s \in \mathbb{C}$, define $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m_1, m_2} \frac{y^s}{|m_1 \tau + m_2|^{2s}}$; it converges when $\Re(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula says

$E_2^*(\tau, s) = \frac{1}{s-1} + (\gamma - \log 4\pi - \log y - 4 \log |\eta(\tau)|) + O(s - 1)$, where
For $\tau \in \mathcal{H}$, the upper half plane, let $y = \Im(\tau)$, and for $s \in \mathbb{C}$, define $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m_1, m_2} \frac{y^s}{|m_1 \tau + m_2|^2s}$; it converges when $\Re(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula says

$$E_2^*(\tau, s) = \frac{1}{s-1} + (\gamma - \log 4\pi - \log y - 4 \log |\eta(\tau)|) + O(s - 1),$$

where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function.
For $\tau \in \mathbb{H}$, the upper half plane, let $y = \Im(\tau)$, and for $s \in \mathbb{C}$, define $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m_1, m_2} \frac{y^s}{|m_1 \tau + m_2|^2} \, ;$

it converges when $\Re(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula says

$$E_2^*(\tau, s) = \frac{1}{s-1} + (\gamma - \log 4\pi - \log y - 4 \log |\eta(\tau)|) + O(s - 1) \, ,$$

where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function.

Kronecker’s first limit formula has several applications;
For $\tau \in \mathbb{H}$, the upper half plane, let $y = \Im(\tau)$, and for $s \in \mathbb{C}$, define $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m_1, m_2} \frac{y^s}{|m_1 \tau + m_2|^2s}$; it converges when $\Re(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula says

$$E_2^*(\tau, s) = \frac{1}{s-1} + (\gamma - \log 4\pi - \log y - 4 \log |\eta(\tau)|) + O(s-1),$$

where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function.

Kronecker’s first limit formula has several applications; we mention one such next.
Let K be a number field.
Let K be a number field. If A is an ideal class of K, then
Let K be a number field. If A is an ideal class of K, then
the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{a \in A} \frac{1}{N a^s}$,
Let K be a number field. If A is an ideal class of K, then the partial zeta function associated to A is
$$
\zeta_K(s, A) = \sum_{a \in A} \frac{1}{Na^s},
$$
and the Dedekind zeta function is
$$
\zeta_K(s) = \sum_a \frac{1}{Na^s}.
$$
Let K be a number field. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{a \in A} \frac{1}{Na^s}$, and the Dedekind zeta function is $\zeta_K(s) = \sum_a \frac{1}{Na^s} = \sum_A \zeta_K(s, A)$;
Let K be a number field. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{a \in A} \frac{1}{Na^s}$, and the Dedekind zeta function is $\zeta_K(s) = \sum_a \frac{1}{Na^s} = \sum_A \zeta_K(s, A)$; these series converge when $\Re(s) > 1$. \[\]
Let K be a number field. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{a \in A} \frac{1}{Na^s}$, and the Dedekind zeta function is $\zeta_K(s) = \sum_a \frac{1}{Na^s} = \sum_A \zeta_K(s, A)$; these series converge when $\operatorname{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$. Let w_K denote the number of roots of unity in K and d_K denote the discriminant of K. Now let K be an imaginary quadratic field. Using the first limit formula, Kronecker showed that

$$
\zeta_K(s) = \frac{1}{w_K 2\pi \sqrt{d_K}} \left(\frac{1}{s-1} + 2\gamma - \log 2 - \log y - 4 \log |\eta(\tau)| \right) + O(|s-1|),
$$

where τ is an element of the upper half plane such that $\{1, \tau\}$ is a basis for an ideal in the inverse class of A, and y is the imaginary part of τ.

Let K be a number field. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{a\in A} \frac{1}{N_a s}$, and the Dedekind zeta function is $\zeta_K(s) = \sum_a \frac{1}{N_a s} = \sum_A \zeta_K(s, A)$; these series converge when $\text{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$.

Let w_K denote the number of roots of unity in K and d_K denote the discriminant of K.
Let K be a number field. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{a \in A} \frac{1}{Na^s}$, and the Dedekind zeta function is $\zeta_K(s) = \sum_a \frac{1}{Na^s} = \sum_A \zeta_K(s, A)$; these series converge when $\text{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$.

Let w_K denote the number of roots of unity in K and d_K denote the discriminant of K.

Now let K be an imaginary quadratic field.
Dedekind zeta functions of imaginary quadratic fields

Let K be a number field. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{a \in A} \frac{1}{Na^s}$, and the Dedekind zeta function is $\zeta_K(s) = \sum_a \frac{1}{Na^s} = \sum_A \zeta_K(s, A)$; these series converge when $\text{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$.

Let w_K denote the number of roots of unity in K and d_K denote the discriminant of K.

Now let K be an imaginary quadratic field.

Using the first limit formula, Kronecker showed that

$$\zeta_K(s, A) = \frac{1}{w_K} \frac{2\pi}{\sqrt{d_K}} \left(\frac{1}{s-1} + 2\gamma - \log 2 - \log y - 4 \log(|\eta(\tau)|) \right) + O(s-1),$$

where
Let K be a number field. If A is an ideal class of K, then the partial zeta function associated to A is
\[\zeta_K(s, A) = \sum_{a \in A} \frac{1}{N^s}, \]
and the Dedekind zeta function is
\[\zeta_K(s) = \sum_{a} \frac{1}{N^s} = \sum_{A} \zeta_K(s, A); \]
these series converge when $\text{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$.

Let w_K denote the number of roots of unity in K and d_K denote the discriminant of K.

Now let K be an imaginary quadratic field.

Using the first limit formula, Kronecker showed that
\[\zeta_K(s, A) = \frac{1}{w_K} \frac{2\pi}{\sqrt{d_K}} \left(\frac{1}{s-1} + 2\gamma - \log 2 - \log y - 4 \log(\eta(\tau)) \right) + O(s-1), \]
where τ is an element of the upper half plane.
Dedekind zeta functions of imaginary quadratic fields

Let K be a number field. If A is an ideal class of K, then
the partial zeta function associated to A is
\[
\zeta_K(s, A) = \sum_{a \in A} \frac{1}{Na^s},
\]
and the Dedekind zeta function is
\[
\zeta_K(s) = \sum_a \frac{1}{Na^s} = \sum_A \zeta_K(s, A);
\]
these series converge when $\text{Re}(s) > 1$ and are known to have
meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$.

Let w_K denote the number of roots of unity in K and d_K denote the
discriminant of K.

Now let K be an imaginary quadratic field.

Using the first limit formula, Kronecker showed that
\[
\zeta_K(s, A) = \frac{1}{w_K} \frac{2\pi}{\sqrt{d_K}} \left(\frac{1}{s-1} + 2\gamma - \log 2 - \log y - 4 \log(|\eta(\tau)|) \right) + O(s-1),
\]
where τ is an element of the upper half plane
such that $\{1, \tau\}$ is a basis for an ideal in the inverse class of A,
Let K be a number field. If A is an ideal class of K, then the partial zeta function associated to A is \(\zeta_K(s, A) = \sum_{a \in A} \frac{1}{Na^s} \), and the Dedekind zeta function is \(\zeta_K(s) = \sum_a \frac{1}{Na^s} = \sum_A \zeta_K(s, A) \); these series converge when \(\Re(s) > 1 \) and are known to have meromorphic continuations to all \(s \in \mathbb{C} \), with only pole at \(s = 1 \).

Let \(w_K \) denote the number of roots of unity in K and \(d_K \) denote the discriminant of K.

Now let K be an imaginary quadratic field. Using the first limit formula, Kronecker showed that

\[
\zeta_K(s, A) = \frac{1}{w_K} \frac{2\pi}{\sqrt{d_K}} \left(\frac{1}{s-1} + 2\gamma - \log 2 - \log y - 4 \log(|\eta(\tau)|) \right) + O(s-1),
\]

where \(\tau \) is an element of the upper half plane such that \(\{1, \tau\} \) is a basis for an ideal in the inverse class of A, and y is the imaginary part of τ.
Let K be a number field. If A is an ideal class of K, then the partial zeta function associated to A is
$$
\zeta_K(s, A) = \sum_{a \in A} \frac{1}{N_a^s},
$$
and the Dedekind zeta function is
$$
\zeta_K(s) = \sum_a \frac{1}{N_a^s} = \sum_A \zeta_K(s, A);\n$$
these series converge when $\Re(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$.

Let ω_K denote the number of roots of unity in K and d_K denote the discriminant of K.

Now let K be an imaginary quadratic field.

Using the first limit formula, Kronecker showed that
$$
\zeta_K(s, A) = \frac{1}{\omega_K} \frac{2\pi}{\sqrt{d_K}} \left(\frac{1}{s-1} + 2\gamma - \log 2 - \log y - 4 \log(|\eta(\tau)|) \right) + O(s-1),
$$
where τ is an element of the upper half plane such that $\{1, \tau\}$ is a basis for an ideal in the inverse class of A, and y is the imaginary part of τ.

Now let K be a real quadratic field.
Now let \(K \) be a real quadratic field.

Using Kronecker’s first limit formula, Hecke showed that
\[
\frac{1}{2} (\pi^{-1} d_K^{1/2})^s \Gamma(s/2)^2 \zeta_K(s, A) =
\]
\[
\log \epsilon^s - 1 + (\gamma - \log 4 \pi) \log \epsilon - \int \log y(t) \frac{dt}{t} - 4 \int \log |\eta(\tau(t))| \frac{dt}{t} + O(s^{-1}),
\]
where \(\epsilon \) is a fundamental unit of \(K \),
\(\tau(t) \) is a certain curve in the upper half plane (depends on \(A \)),
and \(y(t) \) denotes its \(y \)-coordinate.
Now let K be a real quadratic field. Using Kronecker’s first limit formula, Hecke showed that

$$\frac{1}{2} \left(\pi^{-1} d_K^{1/2} \right)^s \Gamma(s/2)^2 \zeta_K(s, A) =$$

$$\log \epsilon \frac{s}{s-1} + (\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} + O(s-1),$$

where ϵ is a fundamental unit of K, $\tau(t)$ is a certain curve in the upper half plane (depends on A), and $y(t)$ denotes its y-coordinate.
Now let \(K \) be a real quadratic field.

Using Kronecker’s first limit formula, Hecke showed that
\[
\frac{1}{2} (\pi^{-1} d_K^{1/2})^s \Gamma(s/2)^2 \zeta_K(s, A) = \\
\frac{\log \epsilon}{s-1} + (\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} + O(s-1),
\]
where
\(\epsilon \) is a fundamental unit of \(K \),

\[
\eta(\tau(t)) = \frac{\tau(t)}{\tau(1)}.
\]
Now let K be a real quadratic field.

Using Kronecker’s first limit formula, Hecke showed that
\[
\frac{1}{2} \left(\pi^{-1} d_K^{1/2} \right)^s \Gamma(s/2) \zeta_K(s, A) = \\
\frac{\log \epsilon}{s-1} + (\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} + O(s-1),
\]
where
\[
\epsilon \text{ is a fundament unit of } K,
\]
\[
\tau(t) \text{ is a certain curve in the upper half plane (depends on } A),
\]
Now let K be a real quadratic field.

Using Kronecker’s first limit formula, Hecke showed that

$$
\frac{1}{2} \left(\frac{\pi^{-1} d_K^{1/2}}{2} \right)^s \Gamma(s/2)^2 \zeta_K(s, A) =
\log \epsilon + \left(\gamma - \log 4\pi \right) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} + O(s-1),
$$

where

- ϵ is a fundamental unit of K,
- $\tau(t)$ is a certain curve in the upper half plane (depends on A), and
- $y(t)$ denotes its y-coordinate.
Now let K be a real quadratic field.

Using Kronecker’s first limit formula, Hecke showed that

$$\frac{1}{2} \left(\pi^{-1} d_K^{1/2} \right)^s \Gamma(s/2)^2 \zeta_K(s, A) =$$

$$\frac{\log \epsilon}{s-1} + (\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} + O(s - 1),$$

where

- ϵ is a fundamental unit of K,
- $\tau(t)$ is a certain curve in the upper half plane (depends on A),
- and $y(t)$ denotes its y-coordinate.
The limit formula and the preceding formula were generalized by
The limit formula and the preceding formula were generalized by Bump-Goldfeld to real cubic fields,
The limit formula and the preceding formula were generalized by Bump-Goldfeld to real cubic fields, Efrat to all cubic fields, and
The limit formula and the preceding formula were generalized by Bump-Goldfeld to real cubic fields, Efrat to all cubic fields, and Liu-Masri to all totally real fields.
The limit formula and the preceding formula were generalized by Bump-Goldfeld to real cubic fields, Efrat to all cubic fields, and Liu-Masri to all totally real fields. We generalize it to all number fields.
The limit formula and the preceding formula were generalized by Bump-Goldfeld to real cubic fields, Efrat to all cubic fields, and Liu-Masri to all totally real fields. We generalize it to all number fields.
For $n \geq 2$, the generalized upper half-plane \mathcal{H}^n
For $n \geq 2$, the generalized upper half-plane $\tilde{H}^n = \text{GL}_n(\mathbb{R})/O_n(\mathbb{R})\mathbb{R}^\times$;
Generalization of Kronecker’s first limit formula

For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/\text{O}_n(\mathbb{R})\mathbb{R}^\times$ consists of certain $n \times n$ matrices;
For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/O_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices; note that \mathcal{H}^2 is the usual upper half plane,
For $n \geq 2$, the generalized upper half-plane $\mathbb{H}^n = \text{GL}_n(\mathbb{R})/O_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices; note that \mathbb{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$.
For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/\text{O}_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices; note that \mathcal{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$.

Consider for $\tau \in \mathcal{H}^n$ and $s \in \mathbb{C}$ with $\Re(s) > 1$,
Generalization of Kronecker’s first limit formula

For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/O_n(\mathbb{R})\mathbb{R}^\times$ consists of certain $n \times n$ matrices; note that \mathcal{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$.

Consider for $\tau \in \mathcal{H}^n$ and $s \in \mathbb{C}$ with $\Re(s) > 1$,

$$E_n(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} \frac{(\det \tau)^s}{\|(m_1 \ldots m_n)\tau\|^s/2}.$$
For \(n \geq 2 \), the generalized upper half-plane \(\mathcal{H}^n = \text{GL}_n(\mathbb{R})/O_n(\mathbb{R})\mathbb{R}^\times \); consists of certain \(n \times n \) matrices; note that \(\mathcal{H}^2 \) is the usual upper half plane, and the point \(x + iy \) corresponds to the matrix \[
 \begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}
\]
Consider for \(\tau \in \mathcal{H}^n \) and \(s \in \mathbb{C} \) with \(\Re(s) > 1 \),
\[
E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} \frac{\left| (\det \tau)^s \right|}{\| (m_1 \ldots m_n) \tau \|^{|ns/2|}}.
\]

Theorem (Liu-Masri, A)

\(E_n^*(\tau, s) \) has meromorphic continuation to all \(s \in \mathbb{C} \) with the only pole at \(s = 1 \),
For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = GL_n(\mathbb{R})/O_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices; note that \mathcal{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix

$$\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$$

Consider for $\tau \in \mathcal{H}^n$ and $s \in \mathbb{C}$ with $\Re(s) > 1$,

$$E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} (\det \tau)^s \|m_1 \cdots m_n\tau\|^s/n.$$

Theorem (Liu-Masri, A)

$E_n^*(\tau, s)$ has meromorphic continuation to all $s \in \mathbb{C}$ with the only pole at $s = 1$, and

$$E_n^*(\tau, s) = \frac{2/n}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i \right) - 4 \log g(\tau) \right) + O(s-1),$$

where

y_i's are related to the diagonal entries mentioned above in τ, and $g(\tau)$ is an explicit function (it generalizes $|\eta(\tau)|$). Our proof is self contained; the proof of Liu-Masri relies on work of Terras (all use the Poisson summation formula).
Generalization of Kronecker’s first limit formula

For $n \geq 2$, the generalized upper half-plane $\mathfrak{H}^n = \text{GL}_n(\mathbb{R})/O_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices; note that \mathfrak{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$

Consider for $\tau \in \mathfrak{H}^n$ and $s \in \mathbb{C}$ with $\Re(s) > 1$,

$$E^*_n(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} (\det \tau)^s ||(m_1 \ldots m_n)\tau||^{ns/2} .$$

Theorem (Liu-Masri, A)

$E^*_n(\tau, s)$ has meromorphic continuation to all $s \in \mathbb{C}$ with the only pole at $s = 1$, and

$$E^*_n(\tau, s) = \frac{2}{n} \frac{s}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i^i \right) - 4 \log g(\tau) \right) + O(s-1),$$

where y_i’s are related to the diagonal entries mentioned above in τ,

...
Generalization of Kronecker’s first limit formula

For \(n \geq 2 \), the generalized upper half-plane \(\mathcal{H}^n = \text{GL}_n(\mathbb{R})/\text{O}_n(\mathbb{R})\mathbb{R}^\times \); consists of certain \(n \times n \) matrices; note that \(\mathcal{H}^2 \) is the usual upper half plane, and the point \(x + iy \) corresponds to the matrix

\[
\begin{bmatrix}
 y & x \\
 0 & 1
\end{bmatrix}
\]

Consider for \(\tau \in \mathcal{H}^n \) and \(s \in \mathbb{C} \) with \(\Re(s) > 1 \),

\[
E^*_n(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} \frac{(\det \tau)^s}{\| (m_1 \ldots m_n) \tau \|^{ns/2}}.
\]

Theorem (Liu-Masri, A)

\(E^*_n(\tau, s) \) has meromorphic continuation to all \(s \in \mathbb{C} \) with the only pole at \(s = 1 \), and

\[
E^*_n(\tau, s) = \frac{2/n}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i \right) - 4 \log g(\tau) \right) + O(s-1),
\]

where \(y_i \)'s are related to the diagonal entries mentioned above in \(\tau \),

and \(g(\tau) \) is an explicit function (it generalizes \(|\eta(\tau)| \)).
Generalization of Kronecker’s first limit formula

For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/O_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices; note that \mathcal{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$

Consider for $\tau \in \mathcal{H}^n$ and $s \in \mathbb{C}$ with $\Re(s) > 1$,

$$E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} (\det \tau)^s \frac{|(m_1 \ldots m_n)\tau|^ns/2}{\| (m_1 \ldots m_n)\tau \|^ns/2}.$$

Theorem (Liu-Masri, A)

$E_n^*(\tau, s)$ has meromorphic continuation to all $s \in \mathbb{C}$ with the only pole at $s = 1$, and

$$E_n^*(\tau, s) = \frac{2/n}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i^i \right) - 4 \log g(\tau) \right) + O(s-1),$$

where y_i’s are related to the diagonal entries mentioned above in τ, and $g(\tau)$ is an explicit function (it generalizes $|\eta(\tau)|$).

Our proof is self contained;
For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/\text{O}_n(\mathbb{R})\mathbb{R}^\times$ consists of certain $n \times n$ matrices; note that \mathcal{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix \[
abla \begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix} .\]

Consider for $\tau \in \mathcal{H}^n$ and $s \in \mathbb{C}$ with $\Re(s) > 1$,
\[
E^*_n(\tau, s) = \pi^{\frac{-ns}{2}} \Gamma \left(\frac{ns}{2} \right) \sum_{m_1, \ldots, m_n} \frac{(\det \tau)^s}{\|(m_1 \ldots m_n)\tau\|^{rac{ns}{2}}} .
\]

Theorem (Liu-Masri, A)

$E^*_n(\tau, s)$ has meromorphic continuation to all $s \in \mathbb{C}$ with the only pole at $s = 1$, and
\[
E^*_n(\tau, s) = \frac{2}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i \right) - 4 \log g(\tau) \right) + O(s-1),
\]

where y_i's are related to the diagonal entries mentioned above in τ, and $g(\tau)$ is an explicit function (it generalizes $|\eta(\tau)|$).

Our proof is self contained; the proof of Liu-Masri relies on work of Terras (all use the Poisson summation formula).
One can define

\[\eta(\tau) = q_1 \prod_{(\ell_2, \ldots, \ell_n)} (1 - q_2) \exp(2\pi iv), \]

where \(q_1, q_2, v \) are certain explicit functions of \(\tau \) and \((\ell_2, \ldots, \ell_n) \), so that \(g(\tau) = |\eta(\tau)| \) and \(\eta(\tau) \) coincides with the usual Dedekind eta function when \(\ell = 2 \).

The classical Kronecker’s first limit formula can be used to show the automorphy property of the usual Dedekind eta function, and probably our generalization of Kronecker’s first limit formula can be used to show the automorphy property of our generalization of the Dedekind eta function; however: are there any applications of the generalization of the Dedekind eta function?
One can define
\[
\eta(\tau) = q_1 \prod_{[m_2,\ldots,m_n]} (1 - q_2)^{\exp(2\pi iv)},
\]
where \(q_1, q_2, v\) are certain explicit functions of \(\tau\) and \((m_2, \ldots, m_n)\),
One can define
\[\eta(\tau) = q_1 \prod_{[m_2,\ldots,m_n]} (1 - q^2)^{\exp(2\pi i \nu)}, \]
where \(q_1, q_2, \nu \) are certain explicit functions of \(\tau \) and \((m_2,\ldots,m_n)\), so that \(g(\tau) = |\eta(\tau)| \) and
One can define
\[\eta(\tau) = q_1 \prod_{[(m_2, \ldots, m_n)]} (1 - q_2)^\exp(2\pi iv), \]
where \(q_1, q_2, v \) are certain explicit functions of \(\tau \) and \((m_2, \ldots, m_n) \),
so that \(g(\tau) = |\eta(\tau)| \) and \(\eta(\tau) \) coincides with the usual Dedekind eta function when \(n = 2 \).
Generalization of Dedekind eta function?

One can define
\[\eta(\tau) = q_1 \prod_{[m_2, \ldots, m_n]} (1 - q_2)^{\exp(2\pi iv)}, \]
where \(q_1, q_2, v \) are certain explicit functions of \(\tau \) and \((m_2, \ldots, m_n) \), so that \(g(\tau) = |\eta(\tau)| \) and \(\eta(\tau) \) coincides with the usual Dedekind eta function when \(n = 2 \).

The classical Kronecker’s first limit formula can be used to show the automorphy property of the usual Dedekind eta function,
Generalization of Dedekind eta function?

One can define
\[\eta(\tau) = q_1 \prod_{[(m_2, \ldots, m_n)]} (1 - q_2)^{\exp(2\pi iv)}, \]
where \(q_1, q_2, v \) are certain explicit functions of \(\tau \) and \((m_2, \ldots, m_n)\), so that \(g(\tau) = |\eta(\tau)| \) and
\[\eta(\tau) \text{ coincides with the usual Dedekind eta function when } n = 2. \]

The classical Kronecker’s first limit formula can be used to show the automorphy property of the usual Dedekind eta function, and probably our generalization of Kronecker’s first limit formula can be used to show the automorphy property of our generalization of the Dedekind eta function;
Generalization of Dedekind eta function?

One can define

$$\eta(\tau) = q_1 \prod_{\{m_2, \ldots, m_n\}} (1 - q_2)^{\exp(2\pi iv)},$$

where q_1, q_2, v are certain explicit functions of τ and (m_2, \ldots, m_n), so that $g(\tau) = |\eta(\tau)|$ and

$\eta(\tau)$ coincides with the usual Dedekind eta function when $n = 2$. The classical Kronecker’s first limit formula can be used to show the automorphy property of the usual Dedekind eta function, and probably our generalization of Kronecker’s first limit formula can be used to show the automorphy property of our generalization of the Dedekind eta function;

however: are there any applications of the generalization of the Dedekind eta function??
Let K be a number field of degree $n > 2$.
Dedekind zeta functions of arbitrary number fields

Let K be a number field of degree $n > 2$.

Theorem

$$w_K\left(2^{-c\pi^{-n/2}d_K^{1/2}}\right)^s d(s)\Gamma(ns/2)\zeta_K(s, A) =$$
Let K be a number field of degree $n > 2$.

Theorem

\[
\omega_K \left(2^{-c \pi^{-n/2} d_K^{1/2}} \right)^s d(s) \Gamma(ns/2) \zeta_K(s, A) =
\]
\[
\frac{2V/n}{s-1} + (\gamma - \log 4\pi) V - \frac{2}{n} \int_D \log \left(\prod_{i=1}^{n-1} y_i(t_1, \ldots, t_m)^i \right) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} -
\]
\[
4 \int_D \log g(\tau(t_1, \ldots, t_m)) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} + O(s - 1), \text{ where}
\]

\[
\tau: \mathbb{R}^m \to \mathbb{H}^n
\]
is an explicit function, r denotes the number of real embeddings of K, c denotes the number of complex conjugate embeddings, $m = r + c - 1$, $\epsilon_1, \ldots, \epsilon_m$ denotes a fundamental set of units of K, D is a fundamental domain under the action of $\langle \epsilon_1, \ldots, \epsilon_m \rangle$ on $(\mathbb{R}^n_{>0})^m$, $V = \int_D dt_1 \cdots dt_m$, and $d(s)$ is an explicit function.

Was proved for totally real fields by Liu-Masri. Both proofs use generalizations of a trick of Hecke (was done for cubic fields by Efrat).
Let K be a number field of degree $n > 2$.

Theorem

\[w_K \left(2^{-c} \pi^{-n/2} d_K^{1/2} \right)^s d(s) \Gamma(ns/2) \zeta_K(s, A) = \]

\[\frac{2V/n}{s-1} + (\gamma - \log 4\pi) V - \frac{2}{n} \int_D \log \left(\prod_{i=1}^{n-1} y_i(t_1, \ldots, t_m)^i \right) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} - \]

\[4 \int_D \log g(\tau(t_1, \ldots, t_m)) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} + O(s - 1), \text{ where} \]

\[\tau : \mathbb{R}^m \rightarrow \mathbb{H}^n \] is an explicit function, r denotes the number of real embeddings of K, c denotes the number of complex conjugate embeddings, $m = r + c - 1$, $\epsilon_1, \ldots, \epsilon_m$ denotes a fundamental set of units of K, D is a fundamental domain under the action of $\langle \epsilon_1, \ldots, \epsilon_m \rangle$ on $(\mathbb{R}_{>0})^m$, $V = \int_D \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m}$, and $d(s)$ is an explicit function.
Dedekind zeta functions of arbitrary number fields

Let K be a number field of degree $n > 2$.

Theorem

$$w_K\left(2^{-c\pi^{-n/2}d_K^{1/2}}\right)^s d(s)\Gamma(ns/2)\zeta_K(s, A) =$$

$$\frac{2V/n}{s-1} + (\gamma - \log 4\pi)V - \frac{2}{n} \int_D \log \left(\prod_{i=1}^{n-1} y_i(t_1, \ldots, t_m)^i\right) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} -$$

$$4 \int_D \log g(\tau(t_1, \ldots, t_m)) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} + O(s - 1),$$

where $\tau : \mathbb{R}^m \to \mathbb{H}^n$ is an explicit function, r denotes the number of real embeddings of K, c denotes the number of complex conjugate embeddings, $m = r + c - 1$, $\epsilon_1, \ldots, \epsilon_m$ denotes a fundamental set of units of K, D is a fundamental domain under the action of $\langle \epsilon_1, \ldots, \epsilon_m \rangle$ on $(\mathbb{R}_{>0})^m$, $V = \int_D \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m}$, and $d(s)$ is an explicit function.

Was proved for totally real fields by Liu-Masri.
Let K be a number field of degree $n > 2$.

Theorem

$$w_K \left(2^{-c \pi^{-n/2} d_K^{1/2}} \right)^s d(s) \Gamma(ns/2) \zeta_K(s, A) =$$

$$\frac{2V/n}{s-1} + (\gamma - \log 4\pi) V - \frac{2}{n} \int_D \log \left(\prod_{i=1}^{n-1} y_i(t_1, \ldots, t_m)^i \right) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} -$$

$$4 \int_D \log g(\tau(t_1, \ldots, t_m)) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} + O(s-1),$$

where

$\tau : \mathbb{R}^m \to \mathbb{H}^n$ is an explicit function, r denotes the number of real embeddings of K, c denotes the number of complex conjugate embeddings, $m = r + c - 1$, $\epsilon_1, \ldots, \epsilon_m$ denotes a fundamental set of units of K, D is a fundamental domain under the action of $\langle \epsilon_1, \ldots, \epsilon_m \rangle$ on $(\mathbb{R}_0^+)^m$, $V = \int_D \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m}$, and $d(s)$ is an explicit function.

Was proved for totally real fields by Liu-Masri. Both proofs use generalizations of a trick of Hecke (was done for cubic fields by Efrat).
Thank you!