A generalization of Kronecker’s first limit formula with application to zeta functions of number fields

Amod Agashe

Florida State University
Department of Mathematics

March 26, 2021
Classical Kronecker’s first limit formula

Let $H = \{ \tau \in \mathbb{C} : \text{Im}(\tau) > 0 \}$. For $\tau \in H$ and $s \in \mathbb{C}$, define the Eisenstein series $E^*_{2}(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m, n} \frac{\text{Im}(\tau)}{|m\tau + n|^2} s$; it converges when $\text{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula gives the Laurent series expansion near $s = 1$:

$$E^*_{2}(\tau, s) = \frac{1}{s - 1} + \left(\gamma - \log 4\pi - \log \text{Im}(\tau) - 4 \log |\eta(\tau)| \right) + O(s - 1),$$

where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function.

One can deduce the modularity property of $\eta(z)$ using the formula above.

Kronecker’s first limit formula has many other applications; we mention one such next.
Let $\mathcal{H} = \{ \tau \in \mathbb{C} : \text{Im}(\tau) > 0 \}$. For $\tau \in \mathcal{H}$ and $s \in \mathbb{C}$,
Let \(\mathcal{H} = \{ \tau \in \mathbb{C} : \text{Im}(\tau) > 0 \} \). For \(\tau \in \mathcal{H} \) and \(s \in \mathbb{C} \), define the Eisenstein series

\[
E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m,n} \frac{\text{Im}(\tau)^s}{|m\tau+n|^2^s};
\]

it converges when \(\text{Re}(s) > 1 \) and is known to have a meromorphic continuation to all \(s \in \mathbb{C} \), with only pole at \(s = 1 \).

The classical Kronecker’s first limit formula gives the Laurent series expansion near \(s = 1 \):

\[
E_2^*(\tau, s) = \frac{1}{s-1} + \left(\frac{\gamma - \log 4\pi - \log \text{Im}(\tau) - 4 \log |\eta(\tau)|}{s-1} \right) + O((s-1));
\]

where \(\gamma \) is the Euler-Mascheroni constant and \(\eta(z) \) is the Dedekind eta-function.

One can deduce the modularity property of \(\eta(z) \) using the formula above.

Kronecker’s first limit formula has many other applications; we mention one such next.
Let $\mathcal{H} = \{ \tau \in \mathbb{C} : \text{Im}(\tau) > 0 \}$. For $\tau \in \mathcal{H}$ and $s \in \mathbb{C}$, define the Eisenstein series $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m,n} \frac{\text{Im}(\tau)^s}{|m\tau+n|^2s}$; it converges when $\text{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula gives the Laurent series expansion near $s = 1$:

$E_2^*(\tau, s) = \frac{1}{s-1} + \left(\gamma - \log 4\pi - \log \text{Im}(\tau) - 4 \log |\eta(\tau)| \right) + O((s-1))$,

where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function. One can deduce the modularity property of $\eta(z)$ using the formula above. Kronecker’s first limit formula has many other applications; we mention one such next.
Classical Kronecker’s first limit formula

Let $\mathcal{H} = \{\tau \in \mathbb{C} : \text{Im}(\tau) > 0\}$. For $\tau \in \mathcal{H}$ and $s \in \mathbb{C}$, define the Eisenstein series $E_2^*(\tau, s) = \pi^{-s}\Gamma(s)\sum_{m,n} \frac{\text{Im}(\tau)^s}{|m\tau+n|^2s}$; it converges when $\text{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula gives the Laurent series expansion near $s = 1$:
Let $\mathcal{H} = \{\tau \in \mathbb{C} : \text{Im}(\tau) > 0\}$. For $\tau \in \mathcal{H}$ and $s \in \mathbb{C}$, define the Eisenstein series $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m,n} \frac{\text{Im}(\tau)^s}{|m\tau + n|^2s}$; it converges when $\text{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula gives the Laurent series expansion near $s = 1$:

$$E_2^*(\tau, s) = \frac{1}{s-1} + \left(\gamma - \log 4\pi - \log \text{Im}(\tau) - 4 \log |\eta(\tau)| \right) + O(s - 1),$$

where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function. One can deduce the modularity property of $\eta(z)$ using the formula above.

Kronecker’s first limit formula has many other applications; we mention one such next.
Let $\mathcal{H} = \{\tau \in \mathbb{C} : \text{Im}(\tau) > 0\}$. For $\tau \in \mathcal{H}$ and $s \in \mathbb{C}$, define the Eisenstein series $E_2^*(\tau, s) = \pi^{-s}\Gamma(s)\sum_{m,n} \frac{\text{Im}(\tau)^s}{|m\tau+n|^2s}$; it converges when $\text{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula gives the Laurent series expansion near $s = 1$:

$$E_2^*(\tau, s) = \frac{1}{s-1} + \left(\gamma - \log 4\pi - \log \text{Im}(\tau) - 4 \log |\eta(\tau)| \right) + O(s-1),$$

where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function.
Let $\mathcal{H} = \{ \tau \in \mathbb{C} : \text{Im}(\tau) > 0 \}$. For $\tau \in \mathcal{H}$ and $s \in \mathbb{C}$, define the Eisenstein series $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m,n} \frac{\text{Im}(\tau)^s}{|m\tau+n|^2s}$; it converges when $\text{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$. The classical Kronecker’s first limit formula gives the Laurent series expansion near $s = 1$:

$$E_2^*(\tau, s) = \frac{1}{s-1} + \left(\gamma - \log 4\pi - \log \text{Im}(\tau) - 4 \log |\eta(\tau)| \right) + O(s-1),$$

where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function. One can deduce the modularity property of $\eta(z)$ using the formula above.
Let $\mathcal{H} = \{ \tau \in \mathbb{C} : \text{Im}(\tau) > 0 \}$. For $\tau \in \mathcal{H}$ and $s \in \mathbb{C}$, define the Eisenstein series $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m,n} \frac{\text{Im}(\tau)^s}{|m\tau + n|^{2s}}$; it converges when $\text{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbb{C}$, with only pole at $s = 1$.

The classical Kronecker’s first limit formula gives the Laurent series expansion near $s = 1$:

$$E_2^*(\tau, s) = \frac{1}{s-1} + \left(\gamma - \log 4\pi - \log \text{Im}(\tau) - 4 \log |\eta(\tau)| \right) + O(s-1),$$

where γ is the Euler-Mascheroni constant and $\eta(z)$ is the Dedekind eta-function.

One can deduce the modularity property of $\eta(z)$ using the formula above.

Kronecker’s first limit formula has many other applications; we mention one such next.
Let K be a number field. The Dedekind zeta function of K is
\[\zeta_K(s) = \sum_a \frac{1}{N\alpha^s}, \]
where a runs over the ideals of K.

If A is an ideal class of K, then the partial zeta function associated to A is
\[\zeta_K(s, A) = \sum_{a \in A} \frac{1}{N\alpha^s}, \]
so that
\[\zeta_K(s) = \sum_A \zeta_K(s, A). \]

These series converge when $\text{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$.

What are the Laurent series expansions of these functions near $s = 1$?

Now let K be an imaginary quadratic field. Using the first limit formula, Kronecker showed that
\[\zeta_K(s, A) = \frac{1}{s-1} + \left(2\gamma - \log 2 - \log \text{Im}(\tau) - 4\log |\eta(\tau)| + O(s-1) \right), \]
where w_K denotes the number of roots of unity in K, d_K denotes the discriminant of K, τ is an element of the upper half plane such that \{1, τ\} is a basis for an ideal in the inverse class of A, and y is the imaginary part of τ.

3 / 7
Let K be a number field. The Dedekind zeta function of K is
\[\zeta_K(s) = \sum_a \frac{1}{N_a^s}, \]
where a runs over the ideals of K. If A is an ideal class of K, then the partial zeta function associated to A is
\[\zeta_K(s, A) = \sum_{a \in A} \frac{1}{N_a^s}, \]
so that $\zeta_K(s) = \sum_A \zeta_K(s, A)$. These series converge when $\Re(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$.

What are the Laurent series expansions of these functions near $s = 1$?

Now let K be an imaginary quadratic field. Using the first limit formula, Kronecker showed that
\[w_K \sqrt{d_K} 2 \pi \zeta_K(s, A) = \frac{1}{s-1} + \left(2\gamma - \log 2 - \log \Im(\tau) - 4 \log |\eta(\tau)| \right) + O(s-1), \]
where w_K denotes the number of roots of unity in K, d_K denotes the discriminant of K, τ is an element of the upper half plane such that \{1, τ\} is a basis for an ideal in the inverse class of A, and $\Im(\tau)$ is the imaginary part of τ.

3 / 7
Dedekind zeta functions of imaginary quadratic fields

Let \(K \) be a number field. The Dedekind zeta function of \(K \) is
\[
\zeta_K(s) = \sum_a \frac{1}{N_a^s},
\]
where \(a \) runs over the ideals of \(K \).

If \(A \) is an ideal class of \(K \), then the partial zeta function associated to \(A \) is
\[
\zeta_K(s, A) = \sum_{a \in A} \frac{1}{N_a^s},
\]
so that \(\zeta_K(s) = \sum_A \zeta_K(s, A) \).

These series converge when \(\text{Re}(s) > 1 \) and are known to have meromorphic continuations to all \(s \in \mathbb{C} \), with only pole at \(s = 1 \).

What are the Laurent series expansions of these functions near \(s = 1 \)?
Dedekind zeta functions of imaginary quadratic fields

Let K be a number field. The Dedekind zeta function of K is
\[\zeta_K(s) = \sum_a \frac{1}{N_a^s}, \]
where a runs over the ideals of K.

If A is an ideal class of K, then the partial zeta function associated to A is
\[\zeta_K(s, A) = \sum_{a \in A} \frac{1}{N_a^s}, \]
so that $\zeta_K(s) = \sum_A \zeta_K(s, A)$.

These series converge when $\text{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$.

What are the Laurent series expansions of these functions near $s = 1$?

Now let K be an imaginary quadratic field.
Let K be a number field. The Dedekind zeta function of K is
\[\zeta_K(s) = \sum a \frac{1}{N_a^s}, \]
where a runs over the ideals of K.

If A is an ideal class of K, then the partial zeta function associated to A is
\[\zeta_K(s, A) = \sum_{a \in A} \frac{1}{N_a^s}, \]
so that \(\zeta_K(s) = \sum_A \zeta_K(s, A). \)

These series converge when \(\Re(s) > 1 \) and are known to have meromorphic continuations to all \(s \in \mathbb{C} \), with only pole at \(s = 1 \).

What are the Laurent series expansions of these functions near \(s = 1 \)?

Now let K be an imaginary quadratic field.

Using the first limit formula, Kronecker showed that
\[
\frac{w_K \sqrt{d_K}}{2\pi} \zeta_K(s, A) = \frac{1}{s-1} + \left(2\gamma - \log 2 - \log \Im(\tau) - 4 \log |\eta(\tau)| \right) + O(s - 1),
\]
Let K be a number field. The Dedekind zeta function of K is
\[\zeta_K(s) = \sum_a \frac{1}{N_a^s}, \]
where a runs over the ideals of K.
If A is an ideal class of K, then the partial zeta function associated to A is
\[\zeta_K(s, A) = \sum_{a \in A} \frac{1}{N_a^s}, \]
so that $\zeta_K(s) = \sum_A \zeta_K(s, A)$.
These series converge when $\Re(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbb{C}$, with only pole at $s = 1$.

What are the Laurent series expansions of these functions near $s = 1$?

Now let K be an imaginary quadratic field.
Using the first limit formula, Kronecker showed that
\[\frac{w_K \sqrt{d_K}}{2\pi} \zeta_K(s, A) = \]
\[\frac{1}{s-1} + \left(2\gamma - \log 2 - \log \Im(\tau) - 4 \log |\eta(\tau)| \right) + O(s - 1), \]
where w_K denotes the number of roots of unity in K, d_K denotes the discriminant of K, τ is an element of the upper half plane such that \{1, τ\} is a basis for an ideal in the inverse class of A, and y is the imaginary part of τ.
Now let K be a real quadratic field.
Now let K be a real quadratic field.

Using Kronecker's first limit formula, Hecke showed that

$$\frac{1}{2} \left(\pi^{-1} d_K^{1/2} \right)^s \Gamma(s/2)^2 \zeta_K(s, A) =$$

$$\frac{\log \epsilon}{s-1} + \left((\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} \right) + O(s - 1),$$

where ϵ is a fundamental unit of K, $\tau(t)$ is a certain curve in the upper half plane (depends on A), and $y(t)$ denotes its y-coordinate.

The preceding formula was generalized by Bump-Goldfeld to real cubic fields, Efrat to all cubic fields, and Liu-Masri to all totally real fields. We generalize it to all number fields.
Now let K be a real quadratic field.

Using Kronecker’s first limit formula, Hecke showed that

$$\frac{1}{2} \left(\pi^{-1} d_K^{1/2} \right)^s \Gamma(s/2)^2 \zeta_K(s, A) =$$

$$\frac{\log \epsilon}{s-1} + \left((\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} \right) + O(s - 1),$$

where ϵ is a fundamental unit of K, $\tau(t)$ is a certain curve in the upper half plane (depends on A), and $y(t)$ denotes its y-coordinate.
Now let K be a real quadratic field. Using Kronecker’s first limit formula, Hecke showed that
\[
\frac{1}{2} \left(\pi^{-1} d_K^{1/2} \right)^s \Gamma(s/2)^2 \zeta_K(s, A) = \frac{\log \epsilon}{s-1} + \left((\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} \right) + O(s-1),
\]
where ϵ is a fundamental unit of K, $\tau(t)$ is a certain curve in the upper half plane (depends on A), and $y(t)$ denotes its y-coordinate.

The preceding formula was generalized by Bump-Goldfeld to real cubic fields, Efrat to all cubic fields, and Liu-Masri to all totally real fields.
Now let K be a real quadratic field.

Using Kronecker’s first limit formula, Hecke showed that
\[
\frac{1}{2} \left(\pi^{-1} d_K^{1/2} \right)^s \Gamma(s/2)^2 \zeta_K(s, A) =
\frac{\log \epsilon}{s-1} + \left((\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} \right) + O(s - 1),
\]
where ϵ is a fundamental unit of K, $\tau(t)$ is a certain curve in the upper half plane (depends on A), and $y(t)$ denotes its y-coordinate.

The preceding formula was generalized by Bump-Goldfeld to real cubic fields, Efrat to all cubic fields, and Liu-Masri to all totally real fields. We generalize it to all number fields.
For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/\text{O}_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices;
For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/O_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices; note that \mathcal{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$.
For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/O_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices; note that \mathcal{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$.

Consider for $\tau \in \mathcal{H}^n$ and $s \in \mathbb{C}$ with $\Re(s) > 1$,

$$E^*_n(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} \frac{(\det \tau)^s}{\|(m_1 \ldots m_n)\tau\|^{ns/2}}.$$
Generalization of Kronecker’s first limit formula

For $n \geq 2$, the generalized upper half-plane $\mathcal{H}_n = \text{GL}_n(\mathbb{R})/\text{O}_n(\mathbb{R})\mathbb{R}^\times$ consists of certain $n \times n$ matrices; note that \mathcal{H}_2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$.

Consider for $\tau \in \mathcal{H}_n$ and $s \in \mathbb{C}$ with $\Re(s) > 1$,

$$E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} \frac{\left(\det \tau\right)^s}{\| (m_1 \ldots m_n) \tau \|^n s/2}.$$

Theorem (Liu-Masri, A)

$E_n^*(\tau, s)$ has meromorphic continuation to all $s \in \mathbb{C}$ with the only pole at $s = 1$, and

$$E_n^*(\tau, s) = \frac{2}{n^s} - \left(\gamma - \log 4\pi - 2\pi \log \prod_{i=1}^{n-1} y_i\right) + O(s - 1),$$

where y_i's are related to the diagonal entries in τ, and $g(\tau)$ is an explicit function (it generalizes $|\eta(\tau)|$).

Our proof is self contained; the proof of Liu-Masri relies on work of Terras (all use the Poisson summation formula).
For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/\text{O}_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices; note that \mathcal{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$

Consider for $\tau \in \mathcal{H}^n$ and $s \in \mathbb{C}$ with $\Re(s) > 1$,

$$E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} \frac{(\det \tau)^s}{\langle (m_1 \ldots m_n)\tau \rangle^{ns/2}}.$$

Theorem (Liu-Masri, A)

$E^*_n(\tau, s)$ has meromorphic continuation to all $s \in \mathbb{C}$ with the only pole at $s = 1$, and

$$E^*_n(\tau, s) = \frac{2/n}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i^i \right) - 4 \log g(\tau) \right) + O(s-1).$$
Generalization of Kronecker’s first limit formula

For $n \geq 2$, the generalized upper half-plane $\mathcal{H}^n = \text{GL}_n(\mathbb{R})/\text{O}_n(\mathbb{R})\mathbb{R}^\times$; consists of certain $n \times n$ matrices; note that \mathcal{H}^2 is the usual upper half plane, and the point $x + iy$ corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$.

Consider for $\tau \in \mathcal{H}^n$ and $s \in \mathbb{C}$ with $\Re(s) > 1$,

$$E^*_n(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} \frac{(\det \tau)^s}{||(m_1 \ldots m_n)\tau||^{ns/2}}.$$

Theorem (Liu-Masri, A)

$E^*_n(\tau, s)$ has meromorphic continuation to all $s \in \mathbb{C}$ with the only pole at $s = 1$, and

$$E^*_n(\tau, s) = \frac{2/n}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i^i \right) - 4 \log g(\tau) \right) + O(s-1),$$

where y_i’s are related to the diagonal entries in τ, and $g(\tau)$ is an explicit function (it generalizes $|\eta(\tau)|$).
Generalization of Kronecker’s first limit formula

For \(n \geq 2 \), the generalized upper half-plane \(\mathcal{H}^n = \text{GL}_n(\mathbb{R})/\text{O}_n(\mathbb{R})\mathbb{R}^\times \); consists of certain \(n \times n \) matrices; note that \(\mathcal{H}^2 \) is the usual upper half plane, and the point \(x + iy \) corresponds to the matrix \(\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix} \).

Consider for \(\tau \in \mathcal{H}^n \) and \(s \in \mathbb{C} \) with \(\Re(s) > 1 \),
\[
E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \ldots, m_n} \frac{(\det \tau)^s}{\| (m_1 \ldots m_n)\tau \|^ns/2}.
\]

Theorem (Liu-Masri, A)

\(E_n^*(\tau, s) \) has meromorphic continuation to all \(s \in \mathbb{C} \) with the only pole at \(s = 1 \), and
\[
E_n^*(\tau, s) = \frac{2/n}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i^i \right) - 4 \log g(\tau) \right) + O(s-1),
\]

where \(y_i \)'s are related to the diagonal entries in \(\tau \), and \(g(\tau) \) is an explicit function (it generalizes \(|\eta(\tau)| \)).

Our proof is self contained; the proof of Liu-Masri relies on work of Terras (all use the Poisson summation formula).
Let K be a number field of degree $n > 2$.
Let K be a number field of degree $n > 2$.

Theorem

$$w_K \left(2^{-c} \pi^{-n/2} d_K^{1/2}\right)^s d(s) \Gamma(ns/2) \zeta_K(s, A) =$$

$$\frac{2V/n}{s-1} + (\gamma - \log 4\pi)V - \frac{2}{n} \int_D \log \left(\prod_{i=1}^{n-1} y_i(t_1, \ldots, t_m)^i\right) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} -$$

$$4 \int_D \log g(\tau(t_1, \ldots, t_m)) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} + O(s - 1),$$

where τ is an explicit function, r denotes the number of real embeddings of K, c denotes the number of complex conjugate embeddings, $m = r + c - 1$, $\epsilon_1, \ldots, \epsilon_m$ denotes a fundamental set of units of K, D is a fundamental domain under the action of $\langle \epsilon_1, \ldots, \epsilon_m \rangle$ on $(\mathbb{R}^0)^m$, $V = \int_D dt_1 \cdots dt_m$, and $d(s)$ is an explicit function.

Was proved for cubic fields by Efrat and for totally real fields by Liu-Masri. All proofs use generalizations of a trick of Hecke.
Dedekind zeta functions of arbitrary number fields

Let K be a number field of degree $n > 2$.

Theorem

$$w_K(2^{-c} \pi^{-n/2} d_K^{1/2})^s d(s) \Gamma(ns/2) \zeta_K(s, A) =$$

$$\frac{2V/n}{s-1} + (\gamma - \log 4\pi)V - \frac{2}{n} \int_D \log \left(\prod_{i=1}^{n-1} y_i(t_1, \ldots, t_m)^i \right) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} -$$

$$4 \int_D \log g(\tau(t_1, \ldots, t_m)) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} + O(s - 1),$$

where $\tau : \mathbb{R}^m \to \mathfrak{H}^n$ is an explicit function, r denotes the number of real embeddings of K, c denotes the number of complex conjugate embeddings, $m = r + c - 1$, $\epsilon_1, \ldots, \epsilon_m$ denotes a fundamental set of units of K, D is a fundamental domain under the action of $\langle \epsilon_1, \ldots, \epsilon_m \rangle$ on $(\mathbb{R}_{>0})^m$, $V = \int_D \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m}$, and $d(s)$ is an explicit function.
Let K be a number field of degree $n > 2$.

Theorem

\[
\begin{align*}
&\frac{w_K}{2} \left(2^{c \pi} - n/2 d_K^{1/2}\right)^s d(s) \Gamma(ns/2) \zeta_K(s, A) = \\
&\frac{2V}{n(s-1)} + (\gamma - \log 4\pi)V - \frac{2}{n} \int_D \log \left(\prod_{i=1}^{n-1} y_i(t_1, \ldots, t_m)^i\right) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} - \\
&4 \int_D \log g(\tau(t_1, \ldots, t_m)) \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m} + O(s - 1),
\end{align*}
\]

where $\tau: \mathbb{R}^m \to \mathfrak{H}^n$ is an explicit function, r denotes the number of real embeddings of K, c denotes the number of complex conjugate embeddings, $m = r + c - 1$, $\epsilon_1, \ldots, \epsilon_m$ denotes a fundamental set of units of K, D is a fundamental domain under the action of $\langle \epsilon_1, \ldots, \epsilon_m \rangle$ on $(\mathbb{R}_{>0})^m$, $V = \int_D \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m}$, and $d(s)$ is an explicit function.

Was proved for cubic fields by Efrat and for totally real fields by Liu-Masri. All proofs use generalizations of a trick of Hecke.
Thank you!