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Classical Kronecker’s first limit formula

Let H = {τ ∈ C : Im(τ) > 0}. For τ ∈ H and s ∈ C,

define the Eisenstein series E ∗2 (τ, s) = π−sΓ(s)
∑

m,n
Im(τ)s

|mτ+n|2s ;

it converges when Re(s) > 1 and is known to have a meromorphic
continuation to all s ∈ C, with only pole at s = 1.

The classical Kronecker’s first limit formula gives the Laurent series
expansion near s = 1:

E ∗2 (τ, s) = 1
s−1 +

(
γ − log 4π− log Im(τ)− 4 log |η(τ)|

)
+O(s − 1) ,

where γ is the Euler-Mascheroni constant and
η(z) is the Dedekind eta-function.

One can deduce the modularity property of η(z) using the formula
above.

Kronecker’s first limit formula has many other applications; we
mention one such next.
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Dedekind zeta functions of imaginary quadratic fields

Let K be a number field. The Dedekind zeta function of K is
ζK (s) =

∑
a

1
Nas , where a runs over the ideals of K .

If A is an ideal class of K , then the partial zeta function associated
to A is ζK (s,A) =

∑
a∈A

1
Nas , so that ζK (s) =

∑
A ζK (s,A).

These series converge when Re(s) > 1 and are known to have
meromorphic continuations to all s ∈ C, with only pole at s = 1.

What are the Laurent series expansions of these functions near s = 1?

Now let K be an imaginary quadratic field.

Using the first limit formula, Kronecker showed that
wK
√
dK

2π ζK (s,A) =

1
s−1 +

(
2γ − log 2− log Im(τ)− 4 log |η(τ)|

)
+ O(s − 1) ,

where wK denotes the number of roots of unity in K , dK denotes the
discriminant of K , τ is an element of the upper half plane such that
{1, τ} is a basis for an ideal in the inverse class of A, and y is the
imaginary part of τ .
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Dedekind zeta functions of real quadratic fields

Now let K be a real quadratic field.

Using Kronecker’s first limit formula, Hecke showed that
1
2

(
π−1d

1/2
K

)s
Γ(s/2)2ζK (s,A) =

log ε
s−1 +

(
(γ − log 4π) log ε−

∫ ε
1 log y(t)dtt − 4

∫ ε
1 log |η(τ(t))|dtt

)
+

O(s − 1) ,

where ε is a fundament unit of K , τ(t) is a certain curve in the upper
half plane (depends on A), and y(t) denotes its y -coordinate.

The preceding formula was generalized by Bump-Goldfeld to real cubic
fields, Efrat to all cubic fields, and Liu-Masri to all totally real fields.

We generalize it to all number fields.
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Generalization of Kronecker’s first limit formula

For n ≥ 2, the generalized upper half-plane Hn = GLn(R)/On(R)R×;
consists of certain n × n matrices;

note that H2 is the usual upper

half plane, and the point x + iy corresponds to the matrix

[
y x
0 1

]
Consider for τ ∈ Hn and s ∈ C with <(s) > 1,

E ∗n (τ, s) = π−ns/2Γ(ns/2)
∑

m1,...,mn

(det τ)s

‖(m1...mn)τ‖ns/2
.

Theorem (Liu-Masri, A)

E ∗n (τ, s) has meromorphic continuation to all s ∈ C with the only pole at
s = 1, and

E ∗n (τ, s) = 2/n
s−1 +

(
γ− log 4π− 2

n log

(∏n−1
i=1 y ii

)
−4 log g(τ)

)
+O(s−1) ,

where yi ’s are related to the diagonal entries in τ , and g(τ) is an
explicit function (it generalizes |η(τ)|).
Our proof is self contained; the proof of Liu-Masri relies on work of
Terras (all use the Poisson summation formula).
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y x
0 1

]
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m1,...,mn
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‖(m1...mn)τ‖ns/2
.

Theorem (Liu-Masri, A)
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)
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Dedekind zeta functions of arbitrary number fields

Let K be a number field of degree n > 2.

Theorem

wK

(
2−cπ−n/2d

1/2
K

)s
d(s)Γ(ns/2)ζK (s,A) =

2V /n
s−1 + (γ − log 4π)V − 2

n

∫
D log

(∏n−1
i=1 yi (t1, . . . , tm)i

)
dt1
t1
· · · dtmtm −

4
∫
D log g(τ(t1, . . . , tm))dt1t1 · · ·

dtm
tm

+ O(s − 1),

where τ : Rm→Hn is an explicit function, r denotes the number of
real embeddings of K , c denotes the number of complex conjugate
embeddings, m = r + c − 1, ε1, . . . , εm denotes a fundamental set of
units of K , D is a fundamental domain under the action
of 〈ε1, . . . , εm〉 on (R>0)m, V =

∫
D

dt1
t1
· · · dtmtm , and d(s) is an explicit

function.

Was proved for cubic fields by Efrat and for totally real fields by
Liu-Masri. All proofs use generalizations of a trick of Hecke.
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Thank you!
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