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1 Introduction

This proposal falls broadly in the area of number theory and more specifically in arithmetic
geometry. It is concerned with a part of the Birch and Swinnerton-Dyer (BSD) conjecture on
elliptic curves and abelian varieties. A fundamental problem of number theory is: given a set of
polynomial equations with rational coefficients, find all of its rational solutions and investigate
their structure. In many cases, the BSD conjecture predicts the existence of such solutions and
describes some of their structure without actually finding the solutions. The importance and
centrality of this conjecture in mathematics is underscored by the fact that a part of the conjecture
was selected as one of the seven millennium prize problems by the Clay Mathematical Institute.

We study the second part of the BSD conjecture, which is a formula that relates several
fundamental invariants of the elliptic curve or abelian variety. In particular, the conjecture gives a
computable formula for the order of the Shafarevich-Tate group of the abelian variety, a mysterious
invariant that arises in the calculation of the rational points on the abelian variety, and is an analog
of the ideal class group. The theory of visibility has recently been used to give new evidence for this
conjectural formula, mainly in specific examples. The PI proposes to use the theory of visibility to
show theoretically that the order of the Shafarevich-Tate group predicted by the BSD conjecture
divides the actual order, assuming the first part of the BSD conjecture on rank.

The PI will also investigate certain other arithmetic invariants appearing in the BSD formula,
viz., the orders of the torsion and component groups of an abelian variety. These groups are of
independent interest – the torsion group addresses part of the problem of finding rational solutions
to equations, and component groups play an important role in the study of abelian varieties (e.g.,
in Ribet’s proof that the Shimura-Taniyama-Weil conjecture implies Fermat’s last theorem). The
PI proposes to extend techniques of Mazur and Emerton in order to characterize the primes that
can divide the orders of the torsion and component groups.

In the next section (Section 2), we give the precise definitions of the objects we are interested
in and give a more technical overview of the proposal. The research part of the proposal consists
of two parts: Section 3 concerns the orders of the torsion and component groups and Sections 4–7
are devoted to the application of the theory of visibility to study the Shafarevich-Tate group. The
two parts can be read more or less independently of each other (after reading Section 2), although
there is some cross-referencing. In any case, the two parts fit together nicely to provide a bigger
picture for the BSD formula.

While working in arithmetic geometry, the PI is also involved in applications of elliptic curves
to cryptography [ALV04], which has broader applications to society. He has taught graduate
courses on the topic, and served as an advisor for an undergraduate reading course as well as a
Master’s project in the the applications of number theory to cryptography. The PI is currently
advising one graduate student in cryptography, and some of the funding will be used to support
his research and provide travel money for students to attend conferences. We also plan to use the
funds to invite outside speakers to the weekly Algebra seminar at Florida State University.
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2 The Birch and Swinnerton-Dyer conjectural formula for
modular abelian varieties

In this section, we state the BSD conjectural formula and introduce the abelian varieties for
which we would like to study this formula. We mention what is known regarding the formula and
summarize more precisely what we wish to accomplish in this proposal.

2.1 The Birch and Swinnerton-Dyer conjectural formula and modular abelian
varieties

We recall briefly the BSD conjecture as generalized by Tate to abelian varieties (e.g., see [Lan91,
III.5]). Let A be an abelian variety defined over Q (in particular, A could be an elliptic curve
and not much would be lost by restricting to that case for the moment). Attached to A is a
complex-valued function LA(s) (sometimes denoted L(A, s)) defined on the part of the complex
plane where Re(s) is sufficiently large. It is called the L-function of A and is obtained by packaging
information about the number of points of A over finite fields. Suppose that the function LA(s)
extends to an analytic function on the entire complex plane (as is conjectured). Then the order of
vanishing of LA(s) at s = 1 is called the analytic rank of A. The first part of the BSD conjecture
says that the rank of the finitely generated group A(Q) is equal to the analytic rank of A.

Suppose that LA(1) 6= 0. The Shafarevich-Tate group of A, denoted XA or X(A), consists
of equivalence classes of principal homogeneous spaces of A that are locally trivial everywhere;
assume XA is finite, as conjectured. If B is an abelian variety over Q, then we denote by B(Q)tor

the torsion subgroup of the finitely generated abelian group B(Q), and by B∨ the dual abelian
variety of B (if B is an elliptic curve, then B∨ = B). Throughout this article, we shall use the
symbol ?= to denote an equality which is conjectural, and if G is a finite group, then we use the
symbol |G| to denote the order of G. The second part of the BSD conjecture asserts the formula:

LA(1)
ΩA

?=
|XA| ·

∏
p cp(A)

|A(Q)tor| · |A∨(Q)tor|
, (1)

where cp(A) is the order of the arithmetic component group of the special fiber at the prime p
of the Néron model of A (so cp(A) = 1 for almost every prime), and the symbol ΩA denotes
the volume of A(R) calculated using a set of generators of the group of invariant differentials
on the Néron model of A (for details, see [AS05]). We will refer to the formula above as the
BSD (conjectural) formula.

Let N be a positive integer and let X0(N) be the modular curve over Q associated with the
problem of parametrizing elliptic curves with a cyclic subgroup of order N . We will often refer
to N as the level. Let J0(N) denote the Jacobian of X0(N); it is an abelian variety defined over Q
whose points correspond to degree-zero divisor classes on X0(N). The Hecke algebra, denoted T,
is the subring of endomorphisms of J0(N) generated by the Hecke operators. Fix a newform f
of weight 2 on Γ0(N). Let If be the ideal of all the elements of T that annihilate f and let
A = Af denote the quotient abelian variety J0(N)/IfJ0(N). We call A the newform quotient or
the modular abelian variety associated to f . If the newform f has rational Fourier coefficients,
then the quotient A is an elliptic curve over Q, and the Shimura-Taniyama-Weil conjecture, which
is now a theorem, asserts that any elliptic curve over Q is isogenous to some such quotient. In fact,
in what follows, the dimension of A does not play a significant role, so the reader may assume
for simplicity that A is just an elliptic curve (more or less throughout the proposal).

It is known that LA(s) extends to an analytic function on the complex plane. Suppose LA(1) 6=
0. Then it follows by results of [KL89] that A(Q) and XA are both finite; moreover, one can use
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the theory of Euler systems to bound |XA| from above in terms of the order conjectured by the
BSD formula, as in the work of Kolyvagin and of Kato (e.g., see [Rub98, Thm 8.6]). Also, the
Eisenstein series method is being used by Skinner-Urban to show that the BSD conjectured order
of XA divides the actual order.

2.2 Summary of the proposal

While the most interesting term on the right hand side of the BSD formula (1) is the order of the
Shafarevich-Tate group, the other terms, viz., the orders of the torsion and component groups are
also of independent interest; in any case, they need to be understood from the point of view of
the BSD formula. When the level N is prime, it follows from [Eme03] (which builds on [Maz77])
that cN(A) = |A(Q)tor| = |A∨(Q)tor| = |CA|, where CA is the subgroup of A(Q)tor generated
by the image of the divisor (0) − (∞). In Section 3 of this proposal, the PI plans to extend the
techniques of Mazur and Emerton to non-prime level. It is not true in general that either the
torsion or component groups are explained by the divisor (0)− (∞). However, we sketch a plan
to prove that if the level N is square-free, then if an odd prime ` > 3 divides either cp(A) (for
some prime p |N) or |A(Q)tor| or |A∨(Q)tor|, then ` divides |CA| or f is congruent modulo ` to
a newform of lower level. This characterizes what primes can divide the torsion and component
groups, and shows that the set of these primes is the same. At the same time, one expects more:
there is often significant cancellation between the orders of the torsion and component groups;
in particular, computational data suggests that the term |A∨(Q)tor| in the denominator of the
BSD formula (1) divides the term

∏
p cp(A) in the numerator (away from 2, and perhaps 3). We

sketch a plan to explain these cancellations, which involves an extension of several parts of Mazur’s
groundbreaking paper [Maz77] to non-prime level. Considering the important role that Mazur’s
paper has played (e.g., in the proof of Fermat’s last theorem), we feel it is imperative to try to
generalize the techniques to non-prime level, and to see to what extent they do actually generalize.

The rest of the proposal is devoted to using the theory of visibility to show that the BSD
conjectural order of the Shafarevich-Tate group divides the actual order for modular abelian
varieties of analytic rank zero or one. All of the theoretical results that we get using visibility
arguments are contingent on the first part of the BSD conjecture for all modular abelian varieties,
so for ease of exposition, let us assume this for the rest of this section.

When LA(1) 6= 0, the PI and L. Merel extracted [AM05] an explicit factor F of LA(1)/ΩA that
measures congruences between f and eigenforms g of the same level such that LAg(1) = 0, and
then used the theory of visibility to show that the odd primes that divide this factor divide |XA|
(under certain mild hypotheses). In Section 5, we propose to extend this work to show that the
entire factor F divides |XA| (staying away from certain primes). However, one cannot extend
this method to the remaining factors of LA(1)/ΩA, since one cannot always use congruences with
forms of the same level to explain all of XA. At the same time, W. Stein has conjectured that
every element of XA is visible in J0(NM) for some M . In Section 6, we sketch a novel plan that
uses a formula of Gross for the special L-value over a quadratic imaginary extension of Q and
visibility via congruences with forms of possibly higher level to show that the full order of XA

predicted by the BSD conjecture can be accounted for.
The currently available visibility theorems are more suited for computations, and are not

sufficient for some of the projects in this proposal. In Section 4, we will indicate a plan to prove a
more general visibility theorem that is suitable for theoretical applications. In Section 7, we sketch
a plan that uses visibility to show that the conjectural order of the Shafarevich-Tate group divides
the actual order for quotients of analytic rank one. Unlike in the rank zero case, this is the only
method we know that can show divisibility in the indicated direction; the theory of Euler system
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gives a divisibility in the other direction (staying away from certain primes).
In Section 8, which serves as an appendix, we state a lemma about intersections of abelian

subvarieties of J0(N) that is used in the earlier sections. This lemma should be useful in other
areas of arithmetic geometry, and we give an application to the study of modular degrees and
congruence numbers. Finally, while our projects on the torsion and component groups on the one
hand and visibility and the Shafarevich-Tate group on the other hand are largely independent
of each other, they fit together nicely in conformity with the BSD formula – one can specify
which set of primes divide which quantity and what cancellations one can expect. Thus in the
course of this proposal, we will study the fine structure of how all the quantities in the BSD
formula interact, which would substantially improve our understanding of the formula even if the
conjectural formula were proved by some other method.

3 The torsion and component groups

As before, let f be a newform of weight 2 on Γ0(N), and let A = Af be the quotient of J0(N)
associated to f . The rational divisor (0)− (∞) generates a finite subgroup of J0(N)(Q), which we
denote C. The image of C under the quotient map J0(N) → A is a cyclic subgroup of A(Q)tor;
we denote this subgroup by CA and call it the cuspidal subgroup of A (note that this is not the
subgroup generated by the images of all the cuspidal divisors, but by the image of just (0)− (∞)).
If p is a prime that divides N , then let Ap denote the special fiber at p of the Néron model of A
and let A0

p denote the identity component of Ap. The (geometric) component group of A at p,
denoted Φp(A) is the quotient group Ap/A0

p; by abuse of notation, we often write Φp(A) also for
Φp(A)(Fp). The arithmetic component group of A is just Φp(A)(Fp), whose order is cp(A).

In the landmark paper [Maz77], Mazur proved that if the level N is prime, then C =
J0(N)(Q)tor and that the specialization map induces an isomorphism C ∼= ΦN (J0(N)). Building
on Mazur’s results, Emerton [Eme03] proved that when N is prime, CA = A(Q)tor and the special-
ization map induces an isomorphism CA ∼= ΦN (A); moreover, he showed that ΦN (A) has trivial
Galois action, so cN(A) = |CA|. Thus the picture for prime level is very satisfactory, especially
from the point of view of the BSD conjecture, since this shows that there is significant cancellation
on the right hand side of the BSD formula (1).

When the level is not prime, the situation is not so simple: the divisor (0)− (∞) does not
fully explain either the torsion groups or the component groups. Let wp denotes the eigenvalue
of the Atkin-Lehner involution Wp acting on f . The product of the Wp’s for p |N is the Fricke
involution WN , whose eigenvalue is denoted wN . Based on numerical data, we expect that if a
prime q > 3 divides the order of the torsion subgroups or the component groups, then either q
divides the order of the cuspidal subgroup CA, or f is congruent modulo q to an eigenform of
true level dividing N/p for some prime p |N such that wp = −1. As an example, for the elliptic
curve E = 66C1 of [Cre97], the cuspidal subgroup is trivial, while |E(Q)tor| = 10, c2(E) = 10,
and c3(E) = 5. One finds that for the corresponding newform f , one has w2 = w3 = −1, and that
f is congruent modulo 5 to a newform at level 11 (the one associated to 11A1). In Section 3.1,
we outline a plan to prove the observation made just above, thus characterizing the primes that
can divide the orders of the torsion and component groups.

The examples also suggest significant cancellation between the torsion and component groups
in the BSD formula; e.g., we expect that that |A∨(Q)tor| divides

∏
p cp(A). We address this issue

in Section 3.2. In order to prove these cancellations, one has to get some control on the orders
of the torsion and component groups. For prime level, Mazur initiated the study of the torsion
and component groups of J0(N), and Emerton used his results to deduce information for newform
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quotients. The PI proposes to extend most of their results appropriately to arbitrary level, starting
with square-free level. The propsed extensions of Mazur’s groundbreaking paper [Maz77] should
have applications beyond the BSD conjecture.

3.1 The orders of the torsion and component groups

Our first goal is the following:

Project 3.1. Show that if an odd prime ` divides the order of the torsion subgroup A∨(Q)tor

but does not divide the order of the cuspidal subgroup CA, then there is a prime p |N such that
wp = −1 and f is congruent modulo ` to a newform of level dividing N/p,

Suppose a prime ` divides the order of the torsion subgroup A∨(Q)tor. As in [Maz77, § II.14],
there is a constituent V of the (T/`T)[Gal(Q/Q)]-module A∨[`] of dimension one. Let m =
AnnTV , which is a maximal ideal with residue characteristic `. Following an argument in [Maz77,
§ II.14], V comes from a finite flat group scheme, on which Tr ≡ 1+r mod m for every prime r -N ,
and Up acts as ap(f) = −wp for every p |N .

Let = = AnnT((0)− (∞)). If r is a prime that does not divide N , then Tr acts as 1 + r
on (0)− (∞), so Tr − (1 + r) ∈ =. Suppose N is square-free for simplicity. Then the cusps
of X0(N) can be indexed by the positive divisors d of N , such that the cusp Pd is the image
of a point a

d ∈ P1(Q) with gcd(a, d) = 1 (e.g., see [Dum]). Note that P1 = 0 and PN = ∞. A
calculation shows that (Up−p)(P1−PN ) = −(p−1)(P1−Pp). We expect that the divisor (P1−Pp)
has order dividing (p− 1), at least for almost every prime; for simplicity of exposition, we assume
this is always so. Then Up acts as multiplication by p on (0)− (∞). Thus = is generated by the
collection: Tr − (1 + r) for every prime r -N , and Up − p for every prime p |N .

If V arose as an image of (0)− (∞), then V is killed by =. Conversely, suppose all constituents
V are killed by =. Since ` divides the order of A∨(Q)tor, one has a subgroup H of A∨(Q)tor of
order `. Then H is killed by =. But if n is the order of (0)− (∞), then n ∈ =; so C is killed by
multiplication by n. Thus ` divides the order of the cuspidal subgroup CA. Moreover, by [Maz77,
Cor. II.14.8], J0(N)et[m] has dimension at most one, so if every constituent V is killed by =, then
the entire torsion is explained by (0)− (∞).

Thus the torsion is not explained by (0)− (∞) only if some constituent V is not killed by =. We
want to see how much the action of the Hecke operators on V differs from its action on (0)− (∞);
the tool to do this are certain Eisenstein series. For simplicity of exposition, we assume that
` 6= 2, 3. Consider the Eisenstein series of level 1 given by: e(q) = −1/24 +

∑∞
n=1 σ(n)qn, where

σ(m) is the sum of the positive divisors of m. Starting with e(q), we can apply the usual degeneracy
operators to construct several Eisenstein series of level N that are eigenfuntions (essentially by
diagonalizing the action of Up on the p-old space for every p |N). For example, if N is prime,
then e(q) − Ne(qN ) is an Eisenstein series on Γ0(N), which Mazur used in his analysis when N
is prime (see [Maz77, § II.5]). In particular, one can construct Eisenstein series on Γ0(N) that
are eigenforms and whose r-th Fourier coefficient is 1 + r for a prime r -N and for a prime p that
divides N , the p-th coefficient can be chosen to be either 1 or p.

A consideration of the Tate parametrization (see [Dum]) shows that if wp = 1, then ` |(p+1) =
(p + wp), so p ≡ −wp mod m, i.e., V is annihiliated by = “locally” at p. Thus one only has to
worry about the possibility that for some p, we have wp = −1, and p 6≡ −wp mod m. If this
happens, then we consider a suitable Eisenstein series e′ whose p-th coefficient is 1 and the other
prime index coefficients agree with that of f . Then f − e′ is a power series in qp, and an argument
similar to that in [Maz77, p.83-85] shows that the level of f −e′ can be lowered by p. Thus f itself
is congruent modulo m to a modular form of lower level. In fact, one can see that f − e′ is a linear
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combination, under degeneracy maps, of Eisenstein series associated to the divisor (0)− (∞) at a
level that divides N/p.

Thus we have a plan to achieve Project 3.1, although the details will have to be worked out,
and one may have to circumvent any problems that arise (e.g., for starters, we may have to restrict
to square-free level). Our argument also seems to indicate that the torsion subgroup of J0(N)(Q)
is generated by the images of (0)− (∞) at various levels M dividing N under the degeneracy maps
from level M to level N . A preliminary look at some data [Stea] seems to be in conformity with
the previous statement, but a detailed check will have to be made. During our investigations, we
will try to address the issue of rational torsion in the global object J0(N) as well.

Our other goal is the following:

Project 3.2. Show that if an odd prime ` divides cp(A), then ` divides the order of the cuspidal
subgroup CA or for some prime p that divides the level N , wp = −1 and f is congruent modulo `
to a newform of level dividing N/p (perhaps under the hypotheses that ` 6= 3 and that the level
is square-free).

Emerton [Eme03] shows that the geometric component group is supported at maximal ideals m

such that either the associated canonical Galois representation ρm (e.g., see [Rib90, Prop. 5.1])
arises from a finite flat group scheme (in which case we say that m is finite) or ρm is reducible.
The reducible representations correspond to rational torsion, which we have already addressed
just above, and are in conformity with what we want to show. If a finite maximal ideal m

with irreducible ρm is in the support of a component group of f , then by Ribet’s level lowering
criterion [Rib90], f is congruent mod m to an eigenform of lower level. Now these congruences can
contribute to the arithmetic component group at a prime p only if wp = −1, which explains the
requirement wp = −1. Thus the strategy for Project 3.2 is clear.

3.2 The cancellations in the Birch and Swinnerton-Dyer formula

Suppose for the moment that LA(1) 6= 0, i.e., that A has analytic rank zero. Then the PI and
W. Stein [AS05, Prop. 4.6] showed that the odd part of the denominator of LA(1)

ΩA
divides |CA|,

which in turn divides |A(Q)tor| (this also follows from formula (2) in Section 5). Thus the BSD

conjectural formula says that
|XA|·

∏
p cp(A)

|A(Q)tor|·|A∨(Q)tor|
?= x
|CA| , for some integer x. Thus one expects

significant cancellation on the left side. In particular, considering that |CA| divides |A(Q)tor |,
and that usually the torsion groups have no relation with XA, we expect that |A∨(Q)tor| divides∏
p cp(A). Also, the contributions to the torsion groups that are not explained by the cuspidal

group should get cancelled by similar contributions to the arithmetic component groups. While
our earlier projects show that the primes where the torsion group is supported are also in the
support of the component groups, they do not explain the cancellations of actual orders.

We revert to the case where LA(1) may or may not be zero. Based on Cremona’s data [Cre97],
we still expect that |A∨(Q)tor| divides

∏
p cp(A). By Project 3.1, the contributions to |A∨(Q)tor|

come from two sources: the divisor (0)− (∞) at level N and the divisors (0)− (∞) at lower levels,
via congruences with with eigenforms of lower level.

Let us look at the second contribution first, since it is easier to explain. Suppose N is squarefree
and f is congruent modulo a maximal ideal m of T lying over a prime ` to an eigenform g of level
dividing N/p for some prime p that divides N . Then it follows from an argument borrowed
from [DSW03, § 7.4] (see [AM05, Prop. 5.3]) that if p 6≡ −wp mod m, wp = −1, and both Af [m]
and Ag[m] are irreducible, then ordm(cp(Af )) > 0. The key idea in the proof is that if Ip denotes
the inertia group, then one has Ag[m]Ip = Ag[m] since Ag has good reduction at p, and so since
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Af [m] ∼= Ag[m] as Galois modules (as both are irreducible), one has that Af [m]Ip is also two
dimensional. This latter fact essentially leads to the conclusion that ordm(cp(Af )) > 0. In our
situation, the hypotheses p 6≡ −wp mod m, and wp = −1 are satisfied, but the representation Af [m]
is not irreducible (since there is rational `-torsion). However, Lemma 8.2 of Section 8 can be used
to circumvent the irreducibility hypothesis: by this lemma, it follows that A∨g ∩A∨f ⊆ A∨g [If +Ig] ⊆
A∨f [If + Ig], provided certain Eisenstein ideals are Gorenstein, which requires an extension of the
results of [Maz77] (we will come back to this point in the next paragraph). Thus we can replace the
congruence ideal m in the argument above by [If +Ig] and expect to conclude that the order of the
rational part of A∨g ∩A∨f divides cp(A). Thus the contributions to |A∨(Q)tor| due to congruences
with lower level should divide

∏
p cp(A).

It remains to explain how the contribution of (0)− (∞) to |A∨(Q)tor| cancels with its con-
tribution to

∏
p cp(A) (both contributions are via natural projections). For this, we will try to

mimic Emerton’s proof [Eme03] that when N is prime, then the contributions of (0)− (∞) to
|A∨(Q)tor| and ΦN (A) have the same order. He starts with Mazur’s result [Maz77] that when N
is prime, the subgroup generated by (0)− (∞) is canonically isomorphic to J0(N)tor as well as
to ΦN (J0(N)). Emerton’s key idea is to show that the quotient map ΦN (J0(N)) → ΦN (A) on
the component groups is a surjection “locally” at any maximal ideal m that satisfies multiplicity
one (i.e., dimT/m J0(N)[m] = 2) and is not finite. Note that finiteness is not a major concern
at the moment, since that is related to congruences with lower level, whose contributions we
have already discussed. When N is prime, the maximal ideals in the support of (0)− (∞) do
satisfy multiplicity one by [Maz77, Cor II.16.3]. When the level is not prime, this need not be
the case (e.g., see [CS]); however, perhaps Emerton’s proof can be salvaged since it suffices that
the maximal ideal is “good” in the sense of Section 8, and perhaps Mazur’s techniques about the
Gorenstein-ness of Eisenstein primes in [Maz77, § II.16] can be generalized sufficiently. We will
do these investigations, which should show that “locally” at a maximal ideal m in the support
of (0)− (∞), the contribution of (0)− (∞) to A∨(Q)tor is the same as the contribution to a suit-
able component group (the one that is killed by m). This should explain that “globally”, the
contribution of (0)− (∞) to |A∨(Q)tor| divides its contribution to

∏
p cp(A).

Our ultimate goal is the following:

Project 3.3. Explain the exact cancellations happening on the right hand side of the BSD formula,
i.e., in the ratio of

∏
p cp(A) to |A(Q)tor| · |A∨(Q)tor|.

As can be seen from our discussion above, this would be a long-term project, but we already
have several leads going into it, and already significant progress can be foreseen. In addition to the
papers of Mazur and Emerton, we will be studying the following articles (among others) closely:
1) The appendix by Mazur and Rapoport in [Maz77], which contains a description of the compo-
nent groups of J0(N) when N is square-free.
2) Lorenzini’s description [Lor95] of the torsion and component groups of J0(pn).
3) Ligozat’s formulas [Lig75] for the order of (0)− (∞) and other cuspidal divisors, and also the
special case where N is product of two primes discussed in [CL97].
4) The description of the Shimura subgroup (which contributes to the Eisenstein kernel) in [LO91].
5) A detailed study of an example of failure of Gorenstein-ness in [CS].
6) Numerical data, including Stein’s computation [Stea] of the order of the subgroup of J0(N)(Q)
generated by all cuspidal divisors.

To the knowledge of the PI, for non-prime level, the torsion and component groups have not
been studied well, especially with regard to the BSD formula. In view of the patterns mentioned
above and the ensuing discussions, the PI feels that the projects above are important problems
that can be resolved and deserve immediate investigation.
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4 Visibility theory

Mazur [CM00] introduced the notion of visibility in order “visualize” elements of Shafarevich-Tate
groups as subvarieties of some ambient abelian variety. This notion will be used to try to show
that the conjectural order of the Shafarevich-Tate group divides the actual order in the following
sections. In this section, we briefly discuss the idea and propose to give an improvement to the
existing main theorem on visibility.

Let J be an abelian variety and let C be an abelian subvariety of J , both defined over Q. Then
the subgroup of XC visible in J is defined as VisJ(XC) = ker(XC → XJ). An element of XC

is said to be visible in J if it is in VisJ(XC). We have the following result [AS02, Thm. 3.1]:

Theorem 4.1 (A-Stein). Let N ′ be a positive integer, and let C and B be abelian subvarieties
of J0(N ′) such that C(Q) is finite. Let m be an odd integer coprime to N ′ and the orders of
torsion and component groups of C and B. Suppose B[m] ⊆ C. Then there is an injection
B(Q)/mB(Q) ↪→ VisJ0(N ′)(XC). In particular, if B has positive Mordell-Weil rank, then m
divides |XC |.

Roughly speaking, the idea is that if two abelian varieties intersect (e.g., when the associated
modular forms are congruent), then the Mordell-Weil group of one can be “transferred” to the
Shafarevich-Tate group of the other, via a linking of the Selmer groups in the short exact sequences
of Galois cohomology for the two abelian subvarieties. For example [AS02, §4.1], there is a
newform f of level 389 such that Af has finite Mordell-Weil group, and f is congruent modulo 5
to another newform g of level 389 such that Ag is an elliptic curve with Mordell-Weil rank 2.
Moreover, the hypotheses of the visibility theorem are satisfied for C = A∨f , B = A∨g , N ′ = 389,
and m = 5, so we get an injection (Z/5Z)2 ↪→ XA∨f

, which shows that |XA∨f
| ≥ 52. The

BSD conjecture predicts that |XA∨f
| = 52, and thus visibility explains the BSD conjectural order

of XA∨f
.

However, one cannot always explain the Shafarevich-Tate group using congruences with eigen-
forms of the same level. For example [CM00, p. 25], there is a newform f of level 5389 such that
the BSD formula predicts that |XA∨f

| = 32, but 3 does not divide the order of VisJ0(5389)(XA∨f
).

However, for any M , one can consider the image A′ of A∨f in J0(NM) using certain standard maps
J0(N)→ J0(NM). W. Stein found that f is congruent modulo 3 to a newform g′ of level 7 · 5389
such that Ag′ has positive Mordell-Weil rank. He then used Theorem 4.1 above to conclude that
there is an injection (Z/3Z)2 ↪→ VisJ0(7·5389)XA′ , from which he deduced that |XA∨f

| = 32. Thus
in this case, visibility explains all of the conjectured XA∨f

, using congruences at a higher level MN .
We shall loosely call this phenomenon visibility at higher level. In fact, Stein conjectures that this
happens more generally (see [JS]):

Conjecture 4.2 (Stein). If LAf (1) 6= 0, then all of XA∨f
can be explained by using an appropriate

generalization of Theorem 4.1, by taking N ′ = NM for various positive integers M and using
appropriate abelian subvarieties B of J0(NM).

In this proposal, we describe a plan that uses visibility at higher level to show that the BSD
conjectured value of XAf divides the actual value when Af has analytic rank 0 or 1, assuming the
first part of the BSD conjecture. Before doing that, we need to overcome a slight drawback with
Theorem 4.1: the hypothesis B[m] ⊆ C often does not hold (e.g., if the dimension of B is bigger
than that of C). As an alternative to Theorem 4.1, one has the following theorem (see [AM05,
Prop. 5.5]), which is easily extracted from [DSW03]:
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Theorem 4.3. Suppose N is square-free and f is a newform on Γ0(N) with LAf (1) 6= 0. Let q be
an odd prime such that q -N . Suppose g ∈ S2(Γ0(N),C) is an eigenform such that Ag has positive
Mordell-Weil rank, and f ≡ g modulo a maximal ideal q of T lying over q. In addition, one has
to assume certain mild technical hypothesis that we are skipping for simplicity. If for some prime
p |N such that wp = −1, f is congruent mod q to a newform of level dividing N/p, then q divides
cp(Af ); otherwise, q divides |X(Af )|. In any case, q divides |X(Af )| ·

∏
p|N cp(Af ).

Theorem 4.3 has the advantage that there is no hypothesis that A∨g [q] ⊆ A∨f , and so it lends
itself well for theoretical applications. But it has the disadvantage that a priori it does not extend
to congruences modulo powers of q (which is needed in Project 5.1) or to the case where f is not
new at level N (which is needed for visibility at higher level in Section 6.2). Theorem 4.1 did not
have these restrictions, but it had the annoying hypothesis that B[m] ⊆ C.

The PI proposes to “amalgamate” the two theorems above, with an eye towards the BSD
conjectural formula (see Project 5):

Project 4.4. Prove a theorem of following form: Suppose N is square-free. Let f and g be
eigenforms of level dividing N such that Af has Mordell-Weil rank zero and Ag has positive
Mordell-Weil rank. Let A′f and A′g be the images of A∨f and A∨g under suitable degeneracy maps
in J0(N). Let m denote the largest divisor of |A′f ∩A′g| that is coprime to 2N · |Af (Q)tor| and to
the degrees of the degeneracy maps. Then m divides |X(Af )| ·

∏
p|N cp(Af ).

The key idea is to replace the maximal ideal q in Theorem 4.3 by a “congruence ideal”.
In Lemma 8.2, take B = A∨g , so that IB = Ig; then we see that A∨g ∩ A∨f = A∨g [If + Ig] ⊆
A∨f [If +Ig], away from exceptional primes (see Section 8; these are precisely the primes that divide
2N · |Af (Q)tor|). A closer look at the proof of Theorem 6.1 of [DSW03] (on which Theorem 4.3 is
based) shows that one the condition in the previous statement is enough to transfer the Mordell-
Weil group of A∨g to the Shafarevich-Tate group of A∨f . As far as allowing N to be a multiple of
the level of f is concerned, one has to apply the above observation to the proof of Theorem 4.1.

5 A formula for LA(1)/ΩA and visibility at the same level

Before discussing our plan that uses visibility at a higher level to show that the BSD conjectured
value of XA divides the actual value (Section 6), we first discuss how a part of XA can be explained
by visibility at the same level. In this section, f is a newform on Γ0(N) such that LA(1) 6= 0,
where A is the modular abelian variety associated to f .

We start with the definitions of some terms that will be needed to describe our formula
for LA(1)/ΩA, from which we will extract a factor that can be related to XA using visibility.
We have an isomorphism of real vector spaces H1(X0(N),Z)⊗R '−→ HomC(H0(X0(N),Ω1),C),
given by integrating differentials along cycles. The winding element, denoted e, is the element
of H1(X0(N),Z) ⊗R that corresponds under the isomorphism above to the map which takes a
differential ω to −

∫ i∞
0 ω. Let π denote the quotient map J0(N) → A, and let π∗ denote the

induced map H1(J0(N),Z) → H1(A,Z). We have the complex conjugation involution on X0(N)
given by τ 7→ −τ , which induces an action on several groups below; if G is such a group, then we
denote by G+ the subgroup of elements of G that are invariant under this induced action. Let H
be short for H1(J0(N),Z) and as before, let = = AnnT(0)− (∞); then =e ⊆ H+.

For simplicity, let us assume that N is square-free. In [Aga00, Prop. 4.1.6] (see also [AS05]),
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the PI proved that up to powers of 2,

LA(1)
ΩA

=

∣∣∣π∗(H+

=e

)∣∣∣
|π∗(Te/=e)|

. (2)

Note that the group π∗(Te/=e) is the subgroup CA of A(Q)tor generated by π((0)− (∞)).
The Hecke algebra T acts on the group H1(X0(p),Z)⊗R; let Ie be the annihilator ideal of the

winding element e with respect to this action. Following an idea of Merel, we rewrite formula (2),
up to powers of 2, as:

LA(1)
ΩA

=

∣∣∣π∗( H+

H+[Ie]

)∣∣∣ · ∣∣∣π∗(H+[Ie]
=e

)∣∣∣
|π∗(Te/=e)|

. (3)

As mentioned above, the denominator on the left divides |A(Q)tor|; thus the BSD formula
predicts that the numerator on the right of the formula above divides |XA| ·

∏
p|N cp(A).

The factor
∣∣∣π∗( H+

H+[Ie]

)∣∣∣ measures the intersection of certain abelian subvarieties; using this

observation, one can show [AM05, Prop 4.5] that if an odd prime q divides the factor
∣∣∣π∗( H+

H+[Ie]

)∣∣∣,
then f is congruent mod q to an eigenform g such that L(g, 1) = 0. Assuming the first part of the
BSD conjecture, Ag has positive Mordell-Weil rank and one can use visibility (e.g., Theorem 4.3)
to show that q divides |XA| (see [AM05, Thm. 5.7]). In view of this, we shall often refer to∣∣∣π∗( H+

H+[Ie]

)∣∣∣ as the visible factor. Using Project 4.4 , we should be able to do more:

Project 5.1. Show that the part of the visible factor that is coprime to 2N |A(Q)tor| divides
|X(Af )| ·

∏
p|N cp(Af ) (assuming the first part of the BSD conjecture on rank).

The second factor
∣∣∣π∗(H+[Ie]

=e

)∣∣∣ in the numerator on the right side of formula (3) is still some-
what of a mystery. In general, it cannot be explained by visibility at the same level, but we expect
that it can be explained by visibility at the higher level, as we discuss next.

6 A formula of Gross and visibility at a higher level

One of the problems with formula (3) is that the first factor on the left does not completely capture
the part of the Shafarevich-Tate group XA that can be explained by visibility at the same level,
since the square of that factor is expected to divide |XA|. This situation can be remedied by
base-changing to a quadratic imaginary field, and using a formula of Gross instead of formula (2)
to extract a square of a factor similar to the visible factor in the previous section. Thus we can
isolate the factor that captures the contributions of visibility at the same level. By using an
analog of Gross’s formula coming from higher level, we sketch a plan to show that the remaining
factor also divides |XA|, using visibility at higher level. As in the previous section, f denotes a
newform of weight 2 on Γ0(N) and A = Af is the quotient of J = J0(N) associated to f such that
LA(1) 6= 0 .

6.1 Squareness of the special L-value

The statement of Gross’s formula requires some technical definitions, which we give below briefly.
For details of these definitions, the reader may see [BD96, §1-2] and [Vat02, §2].
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Let K be a quadratic imaginary field whose discriminant −D is coprime to N . Write N =
N+N−, where N+ is divisible only by those primes which split in K, and N− is divisible only
by primes that are inert in K. Let B be the definite quaternion algebra of discriminant N−. Let
R1, . . . , Rt denote the representatives for the isomorphism classes of the oriented Eichler orders of
level N+ in B. Let PD denote the free group with generators the Ri’s.

Let O denote the ring of integers of K. If σ : K → B is a morphism of algebras and R′ is
an order of B, then we say that the pair (σ,R′) is an optimal embedding if σ(K) ∩ R′ = σ(O).
An oriented optimal embedding (σ,R′) where R′ is an Eichler order of level N+ in B is called a
Gross point (sometimes called Heegner point). Assume that D > 4, and for each i = 1, . . . ,m,
let hi denote the number of oriented optimal embeddings of O in Ri modulo conjugation by R∗i .
Following Gross [Gro87b], we define eD =

∑m
i=1 hi[Ri] ∈ PD ⊗Q. Thus eD is the formal sum of all

Gross points obtained from O and the Ri’s (up to conjugation).
Let εD = (−D· ) denote the non-trivial quadratic character associated to K = Q(

√
−D). As

before, let f be a newform on Γ0(N) such that LAf (1) 6= 0 and let f ⊗ εD denote the twist
of f by εD. We have an action of the Hecke algebra T on PD. If M is a T-module, then
let πf denote the operator on M corresponding to the projection to the f -isotypical component
of M (i.e., where T acts via the eigenvalues of f). Let wi =|R∗i /〈±1〉 |. We define a pairing
〈 , 〉 : PD × PD → Z by requiring that 〈Ri, Rj〉 = δijwi. Then Gross’ formula [Gro87b, Cor. 11.6]
reads: L(f, 1) · L(f ⊗ εD, 1) = (f,f)√

D
〈πf(eD), πf(eD)〉, where (f, f) denotes the Petersson inner

product. In [Gro87b], the formula is proved when N is prime, and the formula above should be
valid following work of Zhang [Zha04] (it is stated as above in [BD97, Thm. 1.1]).

Let P0
D denote the subgroup of PD consisting of of divisors of degree zero (i.e., whose coefficients

add to zero). Let aD =
∑g

i=0
[Ri]
wi

denote the Eisenstein element and let e0
D = eD− deg(eD)

deg(aD) ·aD. Let
=D = AnnTaD; for example, T`− (1 + `) ∈ =D for primes ` -N . Using some results from [RDH04],
which rely on [Eme02], the PI and L. Merel [AM05, §6] show that if the level N is prime, then
Gross’ formula implies that up to powers of 2,

LA/K(1)
ΩA/K

=

∣∣∣πf( P0
D

=De0D

)∣∣∣2
|πf(T/=D)|2

, (4)

where the symbol /K indicates that we have changed the base from Q to the quadratic imaginary
field K. If we compare this formula to the earlier formula (2) for LA(1)/ΩA in Section 5, we notice
that by extending our base field to K, we have obtained a square for the special L-value (up to
a power of 2). Using the above formula and the theory visibility (as in Theorem 4.3 for prime
level), the PI and L. Merel obtained the following result [AM05, Thm. 6.1]:

Theorem 6.1. Suppose N is prime, and let n = numr(N−1
12 ). Let q be an odd prime such that q

divides LA/K(1)

ΩA/K
, but q -n. Then q2 divides the BSD conjectural value of |X(Af/K)|.

Under the hypothesis on q in the theorem above, it is known that q2 divides the actual order
of X(Af/K) (even if A is not an elliptic curve; see [AM05, Rmk. 6.3(2)]), so Theorem 6.1 provides
evidence towards the BSD formula (1).

Project 6.2. Generalize formula (4) and Theorem 6.1 to the case where the level N is square-free.

In order to do this, we have to generalize to arbitrary level some of the results of [Eme02] for
prime level, since they were used in deriving (4). Also, Hida [Hid04] has given different and more
generalizable proofs of some of the results in [Eme02]; these should suffice for Project 6.2.
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6.2 Visibility at higher level

The goal of this section is to describe our plan for the following:

Project 6.3. For square-free N , show that the odd part of the BSD conjectural value of |X(A/K)|
divides the actual value, using visibility at the same and higher level and assuming the first part
of the BSD conjecture.

One can think of formula (4) as being obtained by a “parametrization at level N”, and in-
stead one can consider a formula obtained by a “parametrization at level NM” for some positive
integer M , by either adding extra ramification corresponding to M to the quaternion algebra B
or by multiplying the level N+ of the Eichler orders by M (there will be some restrictions on how
many primes can divide M). One expects that a formula similar to (4) should hold even after
adding ramification to B, considering that Zhang [Zha04] works at a higher level ND to deduce
a formula at level N . Let Ie0D denote the annihilator of e0

D under the action of T. Then in a
manner similar to the derivation of formula (3) in Section 5, we can rewrite equation (4) to get
the following formula for “level NM” up to powers of 2:

LA/K(1)
ΩA/K

=

∣∣∣∣∣πf
(

P0
D,NM

P0
D,NM [I

e0
D,NM

]

)∣∣∣∣∣
2

·

∣∣∣∣∣πf
(
P0
D,NM [I

e0
D,NM

]

=D,NM e0D,NM

)∣∣∣∣∣
2

|πf(TNM/=D,NM e0
D,NM)|2

, (5)

where we have put subscripts NM to emphasize that the objects are at “level NM”.

In formula (5), if an odd prime q divides the factor
∣∣∣πf( P0

D,NM

P0
D,NM [I

e0
D,NM

]

)∣∣∣, then f is congruent

modulo q to an eigenform g of level NM such that L(g, 1) = 0 (by a reasoning similar to that
in Section 5), and hence using visibility, and assuming the first part of the BSD conjecture,

we conclude that q divides |X(A/K)|. The term
∣∣∣πf( P0

D,NM

P0
D,NM [I

e0
D,NM

]

)∣∣∣2, being a square, usually

captures all of the part of X(A/K) that is visible at level NM . If we can prove the following:
(*) if a prime q (with suitable restrictions) divides LA/K(1)

ΩA/K
then there exists an M such that q

does not divide the second factor

∣∣∣∣∣πf
(
P0
D,NM [I

e0
D,NM

]

=D,NM e0D,NM

)∣∣∣∣∣ above,

then q would divide the first factor
∣∣∣πf( P0

D,NM

P0
D,NM [I

e0
D,NM

]

)∣∣∣, which would imply by the argument just

above that q divides |X(A/K)| (recall that we are assuming the first part of the BSD conjecture
on rank). Following Project 5.1, one should be able to extend this result to powers of q, and
thus by taking different M ’s for different q’s, account for the part of the BSD conjectured order
of X(A/K) that is coprime to 2N · |A(Q)| ·

∏
p|N cp(Af ).

Note that the term

∣∣∣∣∣πf
(
P0
D,NM [I

e0
D,NM

]

=D,NM e0D,NM

)∣∣∣∣∣ in (*) divides the order of the torsion part of

P0
D,NM

=D,NM e0D,NM
. Thus, to prove (*), it suffices to prove that

(**) for some M , q does not divide the torsion part of
P0
D,NM

=D,NM e0D,NM
,

which is reasonable to expect, considering that we have a large choice of M ’s (and D’s). In fact,
D. Kohel has done some computations that give evidence towards (**). For example, there is a
newform f of level N = 1283 for which the BSD conjecture predicts that q = 5 divides |XA|.
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The 5-torsion part of XA is not visible at level 1283, but W. Stein made computations which
suggest that it could be visible at level 3 · 1283. D. Kohel has checked that 5 divides the order

of the torsion part of
P0
D,NM

=D,NM eD,NM
for M = 1 for every D, but not for M = 3 for several D (he

considered Eichler orders of level 1 and 3 respectively in the quaternion algebra ramified at 1283).
This is as predicted by (**).

There are two approaches that the PI plans to follow to prove (**). One approach is to write

the group
P0
D,NM

=D,NM e0D,NM
in terms of generators and relations, and show that in some suitable

limit M → ∞, the group is torsion-free. For example, we can try to show some kind of linear
independence of the tie

0
D,NM for certain generators ti of = – a similar idea was used crucially

in [Mer96, Prop. 3] and in a combinatorial lemma in [Par99, §5]. The other strategy is to use the
explicit action of the Hecke operators (especially as the level N+M of the Eichler orders changes
when we vary M) in terms of certain Bruhat-Tits trees and prove the appropriate properties for
these graphs – this brings to mind work of Vatsal [Vat02], which however is in a different direction
(changing the conductor of the Hecke character).

7 Visibility in the analytic rank one case

In the previous two sections, we discussed how one can apply the notion of visibility to show that
the conjectural order of the Shafarevich-Tate group divides the actual order when the analytic rank
of A is zero. In this section, we show how these ideas can be applied in a similar manner even if the
analytic rank of A is one. The main idea is to use a formula of Gross-Zagier for L′A(1) and extract
a visible factor from it (just like we did in the context of LA(1), by using formulas (2) and (4) for
analytic rank zero). The theory of Euler systems (e.g., see [Gro91]) bounds the actual order of the
Shafarevich-Tate group in terms of the BSD conjectural order (under some hypotheses, and away
from certain primes). Our project would work in the opposite direction, and thus complements
the Euler system machinery. To our knowledge, this is the only known approach to show that the
conjectural order of the Shafarevich-Tate group divides the actual order when the analytic rank
is one (for analytic rank zero, there is the Eisenstein series method of Skinner-Urban). Thus we
feel that an investigation of visibility in the context of analytic rank one is crucial.

Let f be a newform of weight 2 on Γ0(N), and let A = Af be the quotient of J = J0(N)
associated to f such that A has analytic rank one. For simplicity, in this section, we assume that
A is an elliptic curve, but the arguments should apply to higher dimensional A as well. We denote
the quotient map J → A by π. Suppose D 6= −3,−4 is a negative fundamental discriminant, and
let K = Q(

√
D) be such that all primes dividing N split in K. Choose an ideal N of the ring of

integers O of K such that O/N ∼= Z/NZ. Then the complex tori C/O and C/N−1 define elliptic
curves related by a cyclic N -isogeny, hence a complex point x of X0(N). This point, called a
Heegner point, is defined over the Hilbert class field H of K. Let P ∈ J(K) be the class of the
divisor

∑
σ∈Gal(H/K)((x)− (∞))σ, where H is the Hilbert class field of K.

In Section 2.1, we mentioned the second part of the BSD conjecture when A has analytic rank
zero. One has a similar conjecture for any analytic rank, which we do not state due to lack of
space. For our purposes, what suffices is that for analytic rank one, the second part of the BSD
conjecture just becomes the following (see [Gro91, Conj. 1.2]):

[A(K) : Zπ(P )] ?= cA ·
∏
p|N

cp(A)· |X(A/K)|1/2, (6)

where cA is the Manin constant of A (conjectured to be one). Our goal is to try to show that the
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left hand side divides the right hand side.
Let B = ker π and consider the exact sequence 0→ B → J → A→ 0. Part of the associated

long exact sequence of Galois cohomology is 0 → B(K) → J(K) π→ A(K) δ→ H1(K,B) →
H1(K,J), from which one can derive the following exact sequence:
0 → J(K)

B(K)+TP→
A(K)
Zπ(P )→ker(H1(K,B)→ H1(K,J)) → 0. The first term can be rewritten as∣∣∣π(J(K)

TP

)∣∣∣ =
∣∣∣π( J(K)

J(K)[I]

)∣∣∣·∣∣∣π(J(K)[I]
TP

)∣∣∣, where I = AnnTP . In view of all this, the BSD formula (6)
just becomes:∣∣∣∣π( J(K)

J(K)[I]

)∣∣∣∣ · ∣∣∣∣π(J(K)[I]
TP

)∣∣∣∣ · |ker(H1(K,B)→ H1(K,J))| ?= cA ·
∏
p|N

cp(A)· |X(A/K)|1/2 . (7)

Project 7.1. Show that the left hand side of (7) divides the right hand side, assuming the first
part of the BSD conjecture.

Note that the first two terms in (7) are analogs of the numerators on the right side of (3)
and (5) from the analytic rank zero case. Analogous to the rank zero situation, one can prove that
if a prime q divides the first term, then f is congruent modulo an ideal over q to an eigenform g
of odd analytic rank at least 3 (see [Aga05]). If one assumes the first part of the BSD conjecture,
then the theory of visibility can be used to show that these primes of congruence divide |X(A/K)|
or
∏
p|N cp(A).

The second factor
∣∣∣π(J(K)[I]

TP

)∣∣∣ is analogous to the second factor
∣∣∣πf(P0

D[I
e0
D

]

=e0D

)∣∣∣ in the analytic
rank zero case (Section 6.2), and similar to that case, we plan to show that this factor can be
explained by visibility at higher level (and there is some experimental evidence for this), following
a strategy similar to that in Section 6.2. In fact there is a striking analogy between the two cases
(e.g., see [Gro87a]), which indicates a proof of one should yield a proof of the other. This also
underscores the importance of undertaking the investigations in Section 6.2 – one would get two
birds in one stone.

The remaining factor on the left side of (7) is the term ker(H1(K,B)→ H1(K,J)). There was
no such factor in the analytic rank one case. If p divides the order of ker(H1(K,B)→ H1(K,J)),
then either p divides some component group, or a point Q ∈ A(K) explains a non-trivial element
of X(B/K); if we are in the latter case, we expect to show that there is a “reverse transfer”
from the Mordell-Weil group of B (which has odd analytic rank, hence positive Mordell-Weil rank
assuming the first part of the BSD conjecture) to X(A/K) which would show that p divides |
X(A/K)|. For either of the three terms above, to show that the entire term divide |X(A/K)|1/2,
we will use the generalized visibility theorem of Project 4.4.

8 Appendix: Intersections of abelian subvarieties

In this section, we discuss a lemma concerning intersections that is used in earlier sections in
studying the BSD formula. This lemma should be useful in other scenarios as well, and we sketch
a plan for one such application: a generalization of the result that a prime dividing the modular
degree of an elliptic curve is a congruence prime.

Let f be a newform of weight 2 on Γ0(N), and let A = Af be the quotient of J = J0(N)
associated to f . Note that there is no restriction on the analytic rank of A in this section. The
dual of the quotient map J → A gives an injection A∨ → J∨, which when composed with the
quotient map gives a polarization (in particular, an isogeny) φ : A∨ → A. The exponent of ker(φ)
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is called the modular exponent and the order of ker(φ) is called the modular number (as in [ARS]).
Since φ is a polarization, the modular number is a perfect square (e.g., see [AS05, Lem. 3.14]).
Recall that If = AnnT(f), and let I⊥f = AnnTIf . Let S = S2(Γ0(N),Z), and consider the group

S
S[If ]+S[I⊥f ]

, which is isomorphic to T
If+I⊥f

. The exponent of this group is called the congruence

exponent and its order is called the congruence number. When A is an elliptic curve, the modular
exponent is just the usual modular degree of A, and the congruence number is the largest integer
modulo which f is congruent to another cuspform.

Ribet proved that the modular degree of an elliptic curve divides the congruence number, and
in [ARS], the authors extended this result to newform quotients by showing that the modular
exponent divides the congruence exponent. One may wonder if more generally, the square root of
the modular number divides the congruence number. The answer is no, and a counterexample is
given in [ARS]. However, this example is the only one at level < 500 in Stein’s computations [Steb],
and is at the same level where the first example of failure of multiplicity one (which we will recall
soon) at the prime 2 was found [Kil02]. This motivates the following:

Project 8.1. Show that the square-root of the modular number divides the congruence number,
“away from” primes where multiplicity one may fail (we will make this precise below).

Let m be a maximal ideal of T of residue characteristic p. We say that m satisfies multiplicity
one if J0[m] is two dimensional over T/m. This is known to hold in several situations, in par-
ticular when the following conditions hold simultaneously (e.g., see [Wil95, Thm. 2.1(ii)] along
with [ARS]): p 6= 2, p2

- N , the canonical semi-simple representation ρm associated to m (e.g.,
see [Rib90, Prop. 5.1]) is irreducible, and m arises as a pullback from T/If . If a maximal ideal
fails any of the first three criteria, we will call it exceptional. The fourth criterion will always be
met in the applications we have in mind.

Following [Eme03], we say that a maximal ideal m of T is good if the m-adic Tate module
of J0(N) is free over Tm. Emerton [Eme03] shows that if m is a good maximal ideal and I is any
saturated ideal of T, then the m-adic completion of the component group of J0(N)[I] is trivial.
Note that if m satisfies multiplicity one, then m is good. We apply this to I = If . If L → M
is a homomorphism of two T-modules, then we say that L = M away from a given maximal
ideal m′ if the induced map on the m-adic completions is an isomorphism for all maximal ideals m

other than m′. From the discussion above, the inclusion A∨ ⊆ J0(N)[If ] is an isomorphism away
from the exceptional ideals. Let B be an abelian subvariety of J0(N) and let IB = AnnTB.
Then away from the exceptional ideals, B ∩ A∨ = B ∩ J0(N)[If ] = B[IB + If ]. Also, B ∩ A∨ ⊆
A∨ ∩ J0(N)[IB] = A∨[IB + If ]. To summarize, we expect to prove:

Lemma 8.2. Let A be the quotient of J0(N) associated to a newform f , and let If = AnnTf . Let
B be an abelian subvariety of J0(N) and let IB = AnnTB. Then away from exceptional maximal
ideals, B ∩A∨ = B[IB + If ] ⊆ J0(N)[IB + If ] = A∨[IB + If ].

Now take B to be the kernel of the quotient map J0(N) → A, so that IB = I⊥f , and the
modular number is just |B ∩ A∨f |. It should be possible to show that away from exceptional
maximal ideals, J0(N)[If + I⊥f ] is free of rank 2 over T

If+I⊥f
(this would be a sort of multiplicity

one argument for ideals, as opposed to maximal ideals, e.g., as in [Rib90, Thm 5.2]); i.e., the order
of A∨[If + I⊥f ] is the square of the congruence number. Thus we expect to show that if one stays
away from exceptional maximal ideals, then the square root of the modular number divides the
congruence number.
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