
Research statement
Amod Agashe

In this document, I briefly describe the main themes of my past and current research. The first
section sets up some notation that is used in the rest of the article. After that, the other sections
can be read more or less independently. Each of these latter sections discusses a particular aspect
of my research.

1 Background and notation

Let N be a positive integer. Let X0(N) denote the modular curve over Q associated to Γ0(N), and
let J0(N) be its Jacobian. Let T denote the subring of endomorphisms of J0(N) generated by the
Hecke operators (usually denoted T` for ` -N and Up for p |N). Let f be a newform in S2(Γ0(N),C).
Let If = AnnTf and let A = Af denote associated newform quotient J0(N)/IfJ0(N) over Q. If f
has integer Fourier coefficients, then A is just an elliptic curve, and every elliptic curve over Q is
isogenous to some such newform quotient.

Most of my research concerns the arithmetic of newform quotients (which includes elliptic
curves), especially in relation to the second part of Birch and Swinnerton-Dyer (BSD) conjecture,
which I will now recall briefly. Let LA(s) denote the L-function associated to A. The analytic
rank r of A is the order of vanishing of LA(s) at s = 1. Let A denote the Néron model of A over Z
and let A0 denote the largest open subgroup scheme of A in which all the fibers are connected. Let
d = dimA, and let D be a generator of the d-th exterior power of the group of invariant differentials
on A. Let ΩA denote the volume of A(R) with respect to the measure given by D. If p is a prime
number, then the (arithmetic) component group of A at p is the group of Fp-valued points of the
quotient AFp/A0

Fp
; its order is denoted cp(A). Let RA denote the regulator of A. If B is an abelian

variety, then we denote by B∨ the dual abelian variety of B. If B is an abelian variety over a
number field F , then X(B/F ) denotes the Shafarevich-Tate group of B over F ; if F = Q, then we
write just X(B) for X(B/F ).

The second part of the BSD conjecture asserts the formula:

lims→1{(s− 1)−rLA(s)}
ΩARA

=
|X(A)| ·

∏
p|N cp(A)

|A(Q)tor| · |A∨(Q)tor|
(1)

I will refer to the formula above as the BSD formula.
In each section below, we shall continue to use the notation introduced in this section.

2 Visibility theory

Mazur introduced the notion of visibility with the idea of “visualizing” elements of the Shafarevich-
Tate group, which are principal homogeneous spaces, by embedding them in some ambient abelian
variety. The resulting theory has been used to prove the existence of non-trivial elements of the
Shafarevich-Tate group. Roughly speaking, the idea is that if two abelian subvarieties of J0(N)
intersect, then the Mordell-Weil group of one can often be “transferred” to the Shafarevich-Tate
group of the other, via a linking of the Selmer groups in the short exact sequences of Galois
cohomology for the two abelian subvarieties. I have been involved in these developments right
from the beginning, and in joint work with Stein, we proved a theorem that makes the above
idea precise [AS02] (similar theorems are proved in Cremona-Mazur’s appendix in [AS05] and
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in [DSW03]), and investigated how much of the BSD conjectural order of the Shafarevich-Tate
group of newform quotients of analytic rank zero can be explained in particular examples [AS05]
(this was done earlier for elliptic curves in [CM00]). In the article [AS05], we also gave formulas
and algorithms to compute quantities in the BSD formula for newform quotients of analytic rank
zero (such formulas were known for elliptic curves; e.g., see [Cre97]).

The currently available theorems on visibility (e.g., [AS02], [DSW03], and Cremona-Mazur’s
appendix in [AS05]) have the problem that for many applications, either the hypotheses are too
restrictive (e.g., they may not hold for abelian varieties of arbitrary dimension) or the conclusion is
not strong enough (e.g., the theorem may show the existence of nontrivial elements only of prime
order). By combining the strategies of the articles mentioned in the previous sentence, I plan
to prove a more general visibility theorem, which will work under the hypothesis of congruences
between Fourier coefficients of modular forms modulo an ideal of the Hecke algebra (which need
not be maximal), to give the existence of subgroups of nontrivial elements of the Shafarevich-Tate
group of order equal to the norm of the ideal of congruence (subject to some mild hypotheses, no
more stringent than the ones in existing theorems).

3 Visibility and the BSD formula

While much of the work on visibility has involved either proving theorems that guarantee the
existence of nontrivial elements of the Shafarevich-Tate group or giving evidence for the BSD
formula in particular examples, one of the long-term goals that I have been pursuing is to use the
theory of visibility to directly give partial theoretical results towards the BSD formula.

Most of our results in this context assume the first part of the Birch and Swinnerton-Dyer
conjecture (which says that order of vanishing of LA(s) at s = 0 is the rank of the group of rational
points on A), so let us assume this in the rest of this section.

Suppose A has analytic rank zero (i.e., LA(1) 6= 0). Then by [KL89], A has Mordell-Weil
rank zero, and so the left side of the BSD formula (1) is LA(1)/ΩA (as RA = 1). In [Agab],
following an idea of Merel, I extracted an explicit integer factor from LA(1)/ΩA that is related to
intersections of A∨ with abelian subvarieties of J0(N) of higher Mordell-Weil rank, and used the
theory of visibility to show that if an odd prime (subject to some technical restrictions) divides
this factor, then it divides |X(A)| ·

∏
p|N cp(A), which is the numerator of the right side of the BSD

formula (1). Using the more general visibility theorem mentioned in the previous section and an
observation made at the end of Section 7, I hope to prove that all of the factor mentioned above
divides |X(A)| ·

∏
p|N cp(A) (under some mild hypotheses). The other factor in the numerator

of LA(1)/ΩA cannot be explained by visibility in J0(N), and the hope is that it can be explained
using visibility in J0(M) for some multiple M of N ; I am investigating an approach to prove this
using a formula of Gross [Gro87] (as generalized by Zhang [Zha01]) after base changing to a suitable
quadratic imaginary field.

A similar situation arises in the case where A is an elliptic curve of analytic rank one, where
by [GZ86], the BSD formula essentially says that the index of the subgroup generated by a certain
Heegner point in the Mordell-Weil group of A over a suitable quadratic imaginary field K equals
|X(A/K)| ·

∏
p|N cp(A), up to the Manin constant. In [Aga08b, Aga09b], I extracted an explicit

integer factor from the Heegner index and used the theory of visibility to show that if an odd prime
(subject to some mild restrictions) divides this factor, then it divides |X(A/K)|. Again the hope
is that the remaining factor can can be explained using visibility in J0(M) for some multiple M
of N .

In both the analytic rank zero case and the analytic rank one case, the theory of Euler systems
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provides upper bounds for the order of the Shafarevich-Tate group in terms of the order predicted
by the BSD formula (staying away from certain primes). The theory of visibility works in the
opposite direction, i.e., it gives lower bounds for the order of the Shafarevich-Tate group in terms
of the order predicted by the BSD formula. For analytic rank zero, there is an approach of Skinner
and Urban that also works in this opposite direction. However, for analytic rank one, as far as
we know, visibility is the only technique that has given results in the direction opposite to that of
Euler systems. Thus the approach using visibility may play an important role in an eventual proof
of the BSD formula for analytic rank one.

4 Torsion and component groups

In this section, for simplicity, we assume that A is an elliptic curve. While the Shafarevich-Tate
group may be the quantity of greatest interest in the BSD formula (1), the torsion subgroup A(Q)tor

and the component groups of A that appear in the formula are quantities are of independent interest:
the torsion subgroup addresses part of the problem of finding rational solutions to the equation
defining the elliptic curve, and component groups play an important role in the study of abelian
varieties (e.g., in Ribet’s proof [Rib90] that the Shimura-Taniyama-Weil conjecture implies Fermat’s
last theorem).

The orders of the component groups appear in the numerator of the BSD formula (1), and
the order of the torsion subgroup appears in the denominator. When the level N is prime, it
follows by [Eme03] (which builds on [Maz77]) that the order of the torsion subgroup equals the
order of the component group at N , and this results in significant cancellation in the BSD formula.
While the order of the torsion subgroup need not equal the product of the orders of the component
groups when N is not prime, some data of Cremona and Stein suggests that there is nevertheless
some pattern. For example, when N is square-free, then for any prime q > 3, the order of the
q-primary part of A(Q)tor divides

∏
p|N cp(A) in the numerical data. I am investigating the data

more thoroughly with W. Stein, and we are in the process of making some explicit conjectures.
The cuspidal subgroup C of J0(N)(C) is the group of degree zero divisors on X0(N)(C) that

are supported on the cusps; it is a finite group. By dualizing the quotient map J0(N) → A,
we may view A (which we are assuming is an elliptic curve) as an abelian subvariety of J0(N).
Let CA = C ∩ A(Q). When N is prime, it follows by [Maz77] that C = J0(N)(Q)tor, and so
A(Q)tor = CA. Numerical data of Stein indicates that the last conclusion may hold in general even
if N is not prime. In [Aga07], I show that if N is square-free and a prime r that does not divide 6N
divides |A(Q)tor|, then r divides |CA|. With more work, using some ideas from [Maz77], I plan to
show that A(Q)tor = CA when N is square-free.

When N is prime, Emerton [Eme03] shows that the specialization map from CA to the com-
ponent group of A at N is an isomorphism, which is the key to proving the result mentioned two
paragraphs above that the order of the torsion group equals the order of the component group
at N . Thus the cuspidal subgroup is used as an intermediary to relate the torsion subgroup to
the component group when N is prime. I plan to do the same for square-free level: as mentioned
above, I expect to show that A(Q)tor = CA, and then I hope to relate CA to the product of the
component groups, by utilizing some of the techniques of Mazur and Emerton that work even if
N is not prime. Finally, I hope to generalize all of the above to the case where A need not be an
elliptic curve, but any newform quotient (or its dual), to the extent possible. This would especially
be useful for computing the order of the torsion subgroup of newform quotients (or bounds on this
order).

While there has been much work on the Shafarevich-Tate group in the context of the BSD
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formula, to our knowledge, no one has undertaken a study of the torsion and component groups
with regard to the BSD formula. Since a full proof of the BSD formula will likely require some
knowledge of the exact cancellation between the torsion and component groups, we feel that our
investigations are of vital importance.

5 The Shafarevich-Tate group and reducibility

In this section, we assume again for simplicity of exposition that A is an elliptic curve. Let p
be a prime. When A has analytic rank zero or one, the theory of Euler systems gives results
which say that the order of the p-primary component of the Shafarevich-Tate group of A over a
suitable quadratic imaginary field is bounded above by the order predicted by the BSD formula,
under certain hypotheses on p. These hypotheses usually include the hypothesis (either explicitly
or implicitly) that the Galois representation A[p] is irreducible.

In [Aga09a], I show that when N is prime and p is odd, if the Galois representation A[p] is
reducible, then the p-primary component of X(A) is trivial. Thus, in this case, the hypothesis in
the Euler systems based results that the Galois representation A[p] is irreducible is not necessary.
Our proof uses a descent argument of Mazur [Maz77, III.3.6] and Emerton’s result [Eme03] that
the specialization map from A(Q)tor to the component group at N is an isomorphism. While it is
not true that the analog of our result above holds if N is not prime (there are counterexamples), I
hope to use my investigations in the previous section to see to what extent the result generalizes,
say when N is square-free.

6 Special L-values of twists

Let −D be a negative fundamental discriminant that is coprime to N and let εD = (−D· ) denote
the quadratic character associated to −D. If f(q) =

∑
n>0 anq

n is the Fourier expansion of f , then
the twist f ⊗ εD of f by εD is the modular form whose Fourier expansion is

∑
n>0 εD(n)anqn. It

is in fact a newform in S2(ND2, ε2D) (considering that D is coprime to N). When the newform
quotient A associated to f is an elliptic curve, then the newform quotient Af⊗εD associated to f⊗εD
is isogenous to the twist of A by −D.

When A is an elliptic curve and its twist by −D has analytic rank zero, I gave a formula [Agaa]
for the left side of the BSD formula (1) for the twist which shows that this quantity, a priori a
rational number, is actually an integer up to a power of 2, under certain mild hypotheses. In view
of the BSD formula, this led me in [Agaa] to the surprising conjecture that for such twists, if the
special L-value is nonzero, then the square of the order of the odd part of the torsion subgroup
divides the product of the order of the Shafarevich-Tate group and the orders of the arithmetic
component groups, under certain mild hypotheses (this does not hold in general if the curve is not
a twist). I am now trying to prove results towards this conjecture. For example, when N is prime,
as mentioned in Section 4, one knows a lot about the cancellations on the right side of the BSD
formula of E; starting with this information, I plan to study how the various quantities change
when one twists E by −D.

Another of my goals is to generalize my formula mentioned above for the left side of the BSD
formula (1) for the twist of an elliptic curve to the case of the twist of a newform quotient A by
any primitive Dirichlet character. It is easy to express the special L-value of the twist in terms of
integrals involving f ; what remains is to express the period of the twist in terms of periods of f
even when A is not an elliptic curve (our proof for elliptic curves employed explicit Weierstrass
equations for A and its twist).
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Suppose q is an odd prime that does not divide |E(Q)tor| or
∏
p cp(E). Then by the conjectural

BSD formula (1), if q divides LE(1)
ΩE

, then q should divide |XE |. Since |XE | is a perfect square, in
fact q2 should divide |XE |, and hence under the hypotheses that q does not divide |E(Q)tor| or∏
p cp(E), if q divides LE(1)

ΩE
, then in fact q2 should divide LE(1)

ΩE
. In [Agaa], I proved that this indeed

happens when the level is prime, but under the hypothesis that q does not divide the algebraic
part of the special L-value for a twist of the elliptic curve E by a quadratic character. While it is
known that this hypothesis does hold for all but finitely many primes q (e.g., see [OS98, Cor. 1]),
it is not clear what that finite set of primes is. In [BO03, p.167-168], one finds a criterion for how
big q needs to be to satisfy the hypothesis, but the period they use (cf. [Bru99, §5]) differs from
the usual period by an unknown algebraic number (cf. the discussion in [Koh85, Cor. 2]). Under
certain situations, a conjecture of Prasanna [Pra08, Conj. 5.1] does imply that the hypothesis we
need above is true. This conjecture asserts that the ratio of the Petersson inner product of a certain
half-integral weight modular form to a certain period is q-integral. The analog of this conjecture is
known to be true when the modular form has integral weight, following a result of Hida [Hid81]. I
am trying to see if the work of Hida can be adapted to attack Prasanna’s conjecture.

7 The modular degree/number, the congruence degree/number,
and multiplicity one

Suppose for the moment that A is an elliptic curve. The degree of the modular parametrization
of A is called the modular degree of A, which we will denote by δA. Let rA denote the congruence
number of A, which is the biggest integer modulo which the newform f associated to A is congruent
to another cuspform in the orthogonal complement of f in S2(Γ0(N),Z). A congruence prime is
a prime that divides the congruence number. The modular degree and congruence primes are of
great interest: Frey and Mai-Murty have observed that an appropriate asymptotic bound on the
modular degree is equivalent to the abc-conjecture (see [Fre97, p.544] and [Mur99, p.180]), while
congruence primes have been studied by Doi, Hida, Ribet, Mazur and others (see, e.g., [Rib83, §1]),
and played an important role in Wiles’s proof [Wil95] of Fermat’s last theorem. Hence relations
between the two quantities are of significant interest. Ribet showed [Zag85] that δA divides rA, and
Frey and Muller [FM99] asked more generally whether δA = rA. In [ARS], we gave examples to
show that the answer to the latter question is no, but also proved that the only primes that can
divide rA/δA are the primes whose squares divide N . We also conjectured that if p is a prime such
that pr | rAδA for some r, then p2r | N . I hope to investigate this conjecture by generalizing the
techniques of [ARS] and using good models for X0(N) when N is not necessarily square free (e.g.,
as in [Edi89]).

Recall that a maximal ideal m of the Hecke algebra T is said to satisfy multiplicity one if
J0(N)[m] is two dimensional over T/m. The multiplicity one hypothesis has played an important
role in arithmetic geometry, in particular in Wiles’ proof [Wil95] of Fermat’s last theorem. There
are theorems that guarantee multiplicity one, usually under the condition that the square of the
residue characteristic of m does not divide N . Our proof in [ARS] that the only primes that can
divide rA/δA are the primes whose squares divide N relied on a multiplicity one condition (which
is satisfied if the square of the residue characteristic of m does not divide N). Thus if a prime p
divides rA/δA, then there is a maximal ideal m of T with residue characteristic p such that m does
not satisfy multiplicity one. Our examples where δA 6= rA gave the first examples of failure of
multiplicity one for maximal ideals of odd residue characteristic whose square divides N but whose
cube doesn’t. This shows that the hypothesis that the square of the residue characteristic of m
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does not divide N in the current multiplicity one theorems is essential.
In [ARS], we also generalized the notions of the modular degree and congruence number to

newform quotients. Let A now be an arbitrary newform quotient. We defined the modular number
(respectively the modular exponent) as the order (respectively the exponent) of the intersection
of the dual of A with its complementary abelian subvariety in J0(N). If A is an elliptic curve,
then the modular exponent is equal to the modular degree of A, and the modular number is the
square of the modular degree. We also defined the congruence number (respectively the congruence
exponent) as the order (respectively the exponent) of the quotient group

S2(Γ0(N),Z)
S2(Γ0(N),Z)[If ] + S2(Γ0(N),Z)[If ]⊥

,

where S2(Γ0(N),Z)[If ]⊥ is the subgroup of elements of S2(Γ0(N),Z) that are orthogonal to S2(Γ0(N),Z)[If ]
with respect to the Petersson inner product. This generalizes the definition of the congruence num-
ber of an elliptic curve. In [ARS], we showed that the modular exponent equals the congruence
exponent away from primes p such that p2 |N . The modular number is a perfect square (due to
the existence of a polarization) and if A is an elliptic curve, then by the discussion above, the
modular number divides the square of the congruence number. While the latter may not hold if
A is not an elliptic curve, I showed in [Aga08a] that the modular number equals the square of the
congruence number away from primes p where multiplicity one fails. This result shows that there
is a congruence of f to another cuspform modulo the order of a certain intersection (staying away
from certain primes). Recall that in Section 3, we discussed a factor of LA(1)/ΩA, for which we
could show that a prime dividing it divides |X(A)| ·

∏
p|N cp(A), under suitable hypotheses. This

factor is precisely the order of a certain intersection, and my result mentioned two sentences ago,
in conjunction with the visibility theorem of [DSW03], should be useful in showing that the entire
factor divides |X(A)| ·

∏
p|N cp(A) (staying away from certain primes).

8 The Manin constant

Suppose A is an elliptic curve. Then the pullback of the Néron differential on A to X0(N) is a
multiple of the differential associated to f by a rational number; this rational number is called
the Manin constant cA of A. The Manin constant plays a role in the conjecture of Birch and
Swinnerton-Dyer (see, e.g., [GZ86, p. 310] and two paragraphs below) and in work on modular
parametrizations (see [Ste89, SW04, Vat05]). It is known that cA is an integer [Edi91] and that if
a prime p divides cA, then p2 |2N [Maz78, Cor 4.1] [AU96]. In [ARS06], we proved the new result
that if p is a prime such that p |cA, then p |δAN , where recall that δA is the modular degree of A.

The main result of [AU96] says that if a prime divides the Manin constant of an elliptic curve,
then that prime divides its conductor N . The proof involves the use of the fact that the modular
degree divides the congruence number. Using my result on the modular number and the congruence
number mentioned in Section 7, I hope to generalize of the result of Abbes-Ullmo to the case where
Af may have dimension bigger than one.

In [ARS06], we also generalized the notion of the Manin constant to arbitrary newform quo-
tients A, as follows. In the BSD formula for A, the real volume ΩA of A is calculated using Néron
differentials. However, for getting a formula or for doing computations regarding the left side of
the BSD formula (1), it is more convenient to compute the volume using the differentials that
correspond to a basis of S2(Γ0(N),Z)[If ]. The former volume is a multiple of the latter by a ra-
tional number cA, which we called the Manin constant of A (this generalizes the definition given
earlier when A is an elliptic curve). In [ARS06], we prove that the (generalized) Manin constant is
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an integer, and conjecture that the Manin constant is one (generalizing the conjecture for elliptic
curves). We also generalized some of the results for the Manin constant known for elliptic curves
to the case of arbitrary newform quotients; in particular, we showed that if p |cA, then p2 |4N .

In [Agaa], I needed an analog of the Manin constant over a quadratic imaginary field. Such an
analog is discussed in [Lan91] over an arbitrary number field F , although its relation to the Manin
constant is not mentioned in loc. cit. It turns out that this analog is a fractional ideal of F , which
we called the Manin ideal in [Agaa]. I am now trying to generalize the results of [ARS06] to the
notion of the Manin ideal.

9 Real multiplication and non-commutative geometry

Loosely speaking, a quantum statistical mechanical system (which is a dynamical system) in non-
commutative geometry (or operator algebras) consists of an algebra A of operators (usually over C)
and a time evolution, i.e., a homomorphism σ : R → Aut(A). A state for the system is a linear
functional on A (usually with values in C) satisfying certain conditions. Associated to such a
system are certain naturally defined quantities, which include the partition function (similar to the
one in statistical mechanics) and a set of equilibrium states (with respect to the time evolution;
these are called KMS-states). One of the important problems in this area is the following: given a
number field K, find a quantum statistical mechanical system such that
(i) its partition function is the Dedekind zeta function of K,
(ii) the quotient of the idèle class group CK by its identity component DK acts as automorphisms
of the system,
(ii) there is a K-subalgebra A0 of A (called the arithmetic subalgebra) such that the values of the
extremal KMS-states on elements of A0 are algebraic numbers that generate the maximal abelian
extension Kab of K, and
(iv) the induced action of CK/DK on the values in (iii) coincides with the action of the Galois
group Gal(Kab/K) ofKab overK via the class field theory isomorphism from CK/DK to Gal(Kab/K).

Thus one may say that in particular, the quantum mechanical system above provides an explicit
version of class field theory over K. Such systems have been constructed when K is either Q [BC95],
or an imaginary quadratic field [CMR05], and are amazing demonstrations of the underlying unity
in mathematics across disciplines.

The next important case of K would be that of a real quadratic field. The construction of the
quantum mechanical system for K = Q and K = C actually uses the explicit class field theory for
these fields arising from cyclotomic fields and complex multiplication of elliptic curves respectively.
Such explicit class field theory does not exist for real quadratic fields K; however, Darmon and
Dasgupta have a conjectural description of an explicit class field theory for real quadratic fields
that uses analogs of elliptic units in the p-adic setting for a suitable prime p. In collaboration with
Matilde Marcolli, I am trying to see if one can construct a quantum mechanical system for K a
real quadratic field satisfying conditions (i)–(iv) mentioned in the previous paragraph, by assuming
the conjectures of Darmon and Dasgupta (for which they have extensive numerical evidence). Our
approach necessitates some modification to the usual quantum mechanical system – for example,
the algebra A is not over C, but over the p-adic numbers for a suitable prime p. I am also
hopeful that the non-commutative geometry/operator algebra approach might shed some light on
the conjectures of Darmon and Dasgupta (which are purely in the number theoretic setting).
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