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Abstract

The Birch and Swinnerton-Dyer formula for modular abelian varieties of analytic
rank zero

by

Amod Sadanand Agashe
Doctor of Philosophy in Mathematics

University of California at Berkeley
Professor Kenneth A. Ribet, Chair

Let N be a positive integer and let A be an optimal quotient of Jy(N) such that its
special L-value, L4(1), is non-zero. Let 4 be the volume of A(R) calculated using a set
of generators of the group of invariant differentials on the Néron model of A. Denote the
Shafarevich-Tate group of A by III4 and the dual abelian variety of A by A. Let ¢,(A)
be the order of the arithmetic component group of A at the prime p. Then the Birch and
Swinnerton-Dyer (BSD) conjecture (as generalized by Tate and Gross) asserts the formula:

L) _ |4l - Ty cp(4)
G AQAQ

We express the ratio L4(1)/Q4 as a rational number when A is the quotient associated
to a newform of weight 2 for I'g(/N), and also, in the case of prime level, when A is the
winding quotient of Jy(N). One would like to compare our expression for L4(1)/Q4 to the
right-hand side of the BSD formula above. We present partial results in that direction and
also outline a program to approach the problem. We compute L4(1)/Q24, up to a bounded
factor, using modular symbols. Assuming the BSD formula, when N = 1091 and A is the
winding quotient, we find that there are elements of Il 4 that are visible neither in Jy(N)
nor in Ji1(N).

There are three numbers associated to a strong modular elliptic curve: the modular
degree, the congruence number and the Manin constant. We prove a result about primes
whose squares do not divide the conductor of the elliptic curve: if such a prime divides
either the Manin constant or the congruence number, then it divides the modular degree
as well. We also generalize the Manin constant to higher dimensional quotients of Jy(N)
and prove some results about our generalization.

Professor Kenneth A. Ribet |
Dissertation Committee Chair
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A guide to this thesis

There are three different themes in this thesis:

1) The ratio of the special L-value to the real volume: As mentioned in the abstract,
if A is an abelian variety over Q, then the Birch and Swinnerton-Dyer (BSD) formula
gives a conjectural formula for the ratio of the special L-value of A, denoted L4(1), to the
real volume of A, denoted 4. We first describe the conjectural formula in Chapter 1. In
Chapter 3, we give a formula that expresses the ratio mentioned above as a rational number
when A is the winding quotient of prime level. In Chapter 4, we give a similar formula for
this ratio for some other quotients of Jy(N), including the quotient associated to a newform
by Shimura. Such formulas were known for strong modular elliptic curves, but not for any
higher dimensional quotients. Chapters 3 and 4 depend on Chapter 1, but otherwise can
be read fairly independently of the rest of the thesis.

2) The generalized Manin constant, congruence primes and the modular degree: In Chap-
ter 2, we obtain new results on the Manin constant, state a generalization of its definition,
and give some new relations between congruence primes and the modular degree. This
chapter can be read independently of the rest of the thesis.

3) Invisible elements of the Shafarevich-Tate group: Mazur introduced the notion of visible
elements of the Shafarevich-Tate group of optimal modular elliptic curves. In Chapter 5,
we generalize some of his results to higher dimensional abelian varieties. This chapter can
be read fairly independently of the rest of the thesis.

At the beginning of each of Chapters 2, 3, and 5, and the beginnings of the sections
of Chapter 4, we summarize the contents of those particular parts of the thesis. So the
reader can read those summaries for a more detailed outline. Also, Chapter 1 serves as an
introduction and motivation for the entire thesis.

We have tried to write this thesis so that it can be easily used as a reference. Even
though the chapters appear in a sequence demanded by logical progression, they need not
be read in a linear order. At the beginning of each chapter (or section), we mention the
prerequisites for that chapter and its relation to the rest of the thesis. Also, in each chapter
we try to recall the notation from before that will be used, or give cross-references for the
notation. Moreover, there is a list of symbols and an index of definitions at the end of the
thesis. So the readers can safely jump directly into any chapter they are interested in.

The Theorems, Lemmas, Remarks, etc., are numbered consecutively and by section.
Thus Theorem 2.1.6 is the 6th result in Section 1 of Chapter 2. The equations are labeled
consecutively and by chapter, but independent of the Theorems, Lemmas, etc.; however, the
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equations are usually only referred to within the proof or the section that they appear in.

The two main new ideas in this thesis are: the trick used to cancel the “discriminant”
from the numerator and the denominator of L4(1)/Q4 that allows us to express this ratio
as a rational number (see the Claim in the proof of Theorem 3.2.2 on p. 21), and the idea
of using a “conjugate” isogeny to obtain some new information about the Manin constant
and about the relation between congruence primes and the modular degree (see the latter
half of the proof of Proposition 2.3.5 on p. 13).



Chapter 1

Introduction: The Birch and
Swinnerton-Dyer conjecture

1.1 The conjecture for abelian varieties

Now that the Shimura-Taniyama-Weil conjecture has been proved, one of the main
outstanding problems in number theory is the Birch and Swinnerton-Dyer (BSD) conjec-
ture. This conjecture was made more than thirty years ago by Birch and Swinnerton-
Dyer [BSD63] [BSD65] for elliptic curves; it was then extended to abelian varieties by
Tate [Tat95], and to motives by Deligne, Beilinson, Bloch and Kato [BK90]. As Cassels
remarks [Cas63], a fundamental problem of number theory is: given a set of polynomial
equations with rational coefficients, find all of its rational solutions and investigate their
structure. In many cases, the BSD conjecture predicts the existence of such solutions and
describes their structure without actually finding the solutions. Thus the BSD conjecture
addresses some basic questions in number theory. It also gives a relation among several
fundamental invariants of an abelian variety defined over a number field. In particular, it
proposes a formula for the order of the Shafarevich-Tate group of the abelian variety, a mys-
terious invariant that arises in the calculation of the Mordell-Weil group using descent, and
elsewhere. A lot of progress has been made on the BSD conjecture by the works of Coates,
Wiles, Gross, Zagier, Rubin, Kolyvagin, Kato, et al.; but a large part of the conjecture is
still not proved (for a summary of results and references, see [IR90, Chap. 20, §5], [Dar97,
§4], and [Rub98, Thm. 8.6, Cor. 8.9]).

We now describe the conjecture briefly. Let A be an abelian variety defined over Q.
Attached to A is a complex-valued function L4(s), defined on the part of the complex
plane where Re(s) is sufficiently large. It is called the L-function of A and is obtained by
packaging information about the number of points of A over finite fields (see [Lan91, § IIL.5,
p. 95] for the precise definition). Suppose, as conjectured, that the function L 4(s) extends
to an analytic function on the entire complex plane. Let r denote the rank of the finitely
generated abelian group A(Q).

The first part of the Birch and Swinnerton-Dyer conjecture says:

Conjecture 1.1.1. Ly(s) has a zero of order r at s = 1.



Let W denote the Z-module of invariant differentials on the Néron model of A. Then
rank(W) = d, where d = dim(A), and AW is a free Z-module of rank 1 contained in
HO(A,Q%/Q). Let D be a generator of AW. Let {wy,...,wq} be a basis of HO(A,QA/Q)
over Q. Then D = c¢- Ajw; for some ¢ € Q*. If G is a group with an action of complex
conjugation, then we denote the subgroup of elements of G invariant under this action
by G*. Let {y1,...,74} be a basis of Hi(A,Z)" and let coo(A) denote the number of
connected components of A(R). Then the quantity |cs(A) - ¢ - det( f% w;)| depends only
on A; we call it the real volume of A, and denote it by €2 4.

Let A denote the dual abelian variety of A. We define the regulator of A, denoted R4,
by Ra = |det(h(P;, Pj))|, where {Py,..., P} is a basis of A(Q)/A(Q)tor, {F,-.-, P/} is a
basis of A\(Q)/A\(Q)tor, and h denotes the Néron pairing (see [Lan91, IT1.1.7]).

The Shafarevich-Tate group of A, denoted III 4, consists of equivalence classes of prin-
cipal homogeneous spaces of A that are locally trivial everywhere; it is conjectured to be
finite. Let A denote the Néron model of A over Z and let A° denote the largest open
subgroup scheme of A in which all the fibers are connected. If p is a prime number, then
let cy(A) = [Ar, (Fp) : A(l)i‘p (Fp)]-

If G is a finite group, then |G| denotes its order. Assume that the Shafarevich-Tate
group is finite, and that the first part of the BSD conjecture is true. Then the second part
of the BSD conjecture, as generalized by Tate, and reformulated by Gross (e.g., see [Lan91,
ITL.5)) gives the formula:

Conjecture 1.1.2.
1L o M4l - Ra- [T, c(4)

b AQ)er] - [A(Q)tor]

where Lg) (s) denotes the rth derivative of La(s), and the rest of the terms are as defined
above.

Here, and in the future, the symbol Z denotes an equality that is conjectured but not
proved. The formula above shall be called the BSD formula.

Note that the formula says that the ratio Lg)(l) /4, which a priori is a complex
number, is in fact rational; moreover, the formula expresses this rational number in terms
of certain arithmetic invariants of A.

1.2 The conjectural formula for modular abelian varieties

In this thesis, we will consider the BSD formula only for a certain class of abelian
varieties that we define now. In this section, we also gather some results and notation that
will be used in Chapters 3 and 4. We continue to us the notation of the previous section.

Let N be a positive integer and let Xo(N) be the modular curve over Q associated
with the problem of parametrizing elliptic curves with a cyclic subgroup of order N. Let
Jo(IN) denote the Jacobian of Xy(IV); it is an abelian variety defined over Q. The integer N
will be referred to as the level. The Hecke algebra, denoted by T, is the subring of endo-
morphisms of Jo(IN) generated by the Hecke operators T, for £{N and U, for p| N. See, for
example, [DDT94, §1.3, §1.5] for detailed definitions of all of the above. Let I be an ideal of



the Hecke algebra such that T/I is torsion-free, and let A be the quotient abelian variety
Jo(N)/IJy(N), defined over Q. We call such abelian varieties modular abelian varieties.
Then the L-function of A, L4(s), has analytic continuation to the entire complex plane
(by [Shi94, Thm. 7.14], completed by [Car86]). The order of vanishing of L4(s) at s = 1
is called the analytic rank of A. This definition is motivated by Conjecture 1.1.1. In this
thesis, we consider only modular abelian varieties A whose analytic rank is zero, i.e., for
which L4(1) is non-zero. We call L4(1) the special L-value of A. So assume that A has
analytic rank zero. Then, by [KL89] (which uses [GZ86], and was completed indepen-
dently in [BFH90] and [MM91]), the Mordell-Weil group, A(Q), and the Shafarevich-Tate
group, 1114, are finite. In particular, the first part of the BSD conjecture (Conjecture 1.1.1)
is true in this case, and also the regulator, R4, is equal to 1. Since A, the dual abelian
variety of A, is isogenous to A, the Mordell-Weil group A\(Q) is also finite.
The BSD formula becomes

Conjecture 1.2.1.

La(l) 2 (Al - [Ty 1w cp(A)
Q4 |A(Q)]-1A(Q)]

It is known that L 4(1)/€4 is a rational number [Shi77] and when A is an elliptic curve,
there are formulas to calculate this rational number as well as all the invariants in the BSD
formula except |l 4| (e.g., see [Cre97]). Also, one can use Euler systems to bound the order
of IT 4 from above in terms of the order given by Conjecture 1.2.1 (staying away from certain
primes), as in the work of Kolyvagin and of Kato (e.g., see [Rub98, Thm. 8.6]). However, as
Swinnerton-Dyer remarked in [SD67], there was no known formula for calculating L 4(1)/Q4
when A is not an elliptic curve. In this thesis, we give such formulas for certain quotients
of Jy(IN) that need not be elliptic curves (see Sections 3.2, 4.1.1, and 4.2.1); the first such
formula appeared in [Aga99] (although it was not stated explicitly there).

Now we discuss the left-hand side of the BSD formula in Conjecture 1.2.1 in more detail.
Let S3(T'o(N),C) denote the space of cusp forms of weight 2 for I'g(N). By the Fourier
ezpansion of a cusp form, we mean its Fourier expansion at the cusp oo (e.g., see [DDT94,
§1.2]); the coefficients of this expansion are called the Fourier coefficients of the cusp form.
Let S3(T'0(IN), Z) be the subgroup of cusp forms with integral Fourier coefficients. If R is a
ring, let So(T'o(IN), R) = S2(T'0(N),Z)® R. The Hecke algebra T acts on So(I'g(N), R) (see,
e.g., [DDTY94, §1.3, §1.5] for details). If M is a T-module, then M[I] denotes the submodule
of elements of M that are killed by every element of I. The map

S2(To(N), C) = H(Xo(N), xo(wy/c)s
given by f +— wy = 2mif(z)dz induces a canonical isomorphism
S2(To(N),Q) — H°(Xo(N), Qxo(7)/Q)

(for example, by [DDT94, Thm. 1.33]). We have the standard immersion Xo(N) — Jy(N)
obtained by sending the cusp oo to 0; pulling back differentials along this map gives us an
isomorphism (e.g., see [Mil86¢c, Prop. 2.2])

HY(Jo(N), Qs0(v)/Q) = H(Xo(N), Qx0(n)/Q)-



Using the two isomorphisms above, we get an isomorphism:
52(To(N), Q) —+ H(Jo(N), Lsy(vy/)- (1)

Let d = dim(A). A Q-basis for H°(4,Q,,q) is given by the differentials corresponding
to a set of generators of the Z-module S4 = So(T'o(NN), Z)[I] under the isomorphism (1.1);
denote this basis by {w1,...,wg}. As in Section 1.1, let D be a generator of AYH?(A, Q‘i/z),
where again A is the Néron model of A over Z. Then D = c- Ajw; for some ¢ € Q*. The
absolute value of ¢ is depends only on A; denote this absolute value by c,. We call the
constant ¢, the generalized Manin constant and study it in Chapter 2. The generalized
Manin constant is an integer (Theorem 2.2.2) and the only primes that can divide it are
the prime 2 and the primes whose squares divide N (Theorem 2.2.3).

If(,): MxM' — C,is a pairing between two Z-modules M and M’, each of the same
rank m, and {a,...,ay,} and {B1,...,Bm} are some bases of M and M’ (respectively),
then the discriminant of the pairing ( , ) is defined as the absolute value of det({w, 5;)),
and denoted by disc(M x M’ — C). We have a pairing

(,): (H(Xo(N),Z)t ® C) x S5(I'y(N),C) = C

given by (v, f) = (v, f) = [ wy. This induces a pairing H1(4,Z)" x S4 — C.
From the definition of €24 in Section 1.1 and the discussion above, we get

Q4 =cu-coo(A)-disc(H1(A,Z)T x S4 — C).

In this thesis, we shall study only the left-hand side of the BSD formula in Conjec-
ture 1.2.1 (except in Section 3.4, where we discuss the right-hand side briefly). We may
rewrite the left-hand side as

1 La(1)
Ca Coo(A)-disc(H1(A,Z)t x Sy —» C) -~

(1.2)

Now we are in a position to describe in more detail how the various chapters are
related to the BSD formula. In Chapter 2, we study the constant ¢, in (1.2) above. We
prove formulas expressing the term

L4(1)
coo(A) - diso(FL (A, Z)T x Sa = ©)

appearing in (1.2) as a rational number when A is the winding quotient of prime level (in
Chapter 3) and for certain other quotients (in Chapter 4). The only relation of the BSD
formula to Chapter 5 is that we use it to get some information on |III4| (assuming the
conjectural formula) by using the formula for (1.2) that we derive in Chapter 3.



Chapter 2

A generalization of the Manin
constant and the relation between
congruence primes and the
modular degree

We extend the techniques of a paper of Abbes and Ullmo [AU96] to show that if E is
a strong modular elliptic curve and if p is a prime such that p does not divide the mod-
ular degree of E, and p? does not divide the conductor of E, then p does not divide the
Manin constant of F either. We also show that except for primes whose squares divide the
conductor, the congruence primes associated to the newform corresponding to E divide the
modular degree of E. Finally we generalize the notion of the Manin constant to arbitrary
quotients of Jy(NN) under the action of ideals of the Hecke algebra and mention the corre-
sponding results and a conjecture for it. This chapter may be read independently of the rest
of the thesis. Only Theorem 2.2.3 and Conjecture 2.2.8 from this section will be referred to
later.

2.1 Introduction and results

We recall the definition of the Manin constant and what is known about it. Let N be
a positive integer and recall that X((/N) is the modular curve over Q that classifies elliptic
curves with a given cyclic subgroup of order N. Let Jo(N) be the Jacobian of Xy(N) and
let f be a newform of weight 2 for I'g(N) with integral Fourier coefficients. Recall that
the Hecke algebra, denoted T, is the sub-ring of endomorphisms of Jy(IN) generated by the
Hecke-operators Ty for primes £{ N and by U, for p| N. Let I; be the annihilator of f under
the action of T, and let E = Jo(N)/I;Jo(N) be the indicated quotient, an elliptic curve
over Q. We call such an elliptic curve the strong modular elliptic curve associated to f.
Composing the quotient map Jy(N) — FE with the standard immersion Xo(N) — Jo(N)



obtained by sending the cusp oo to 0, we get a surjective map of curves
¢p: Xo(N) — E.

The degree of the map ¢, denoted deg¢y, is called the modular degree of E.

Let Ez be the Néron model of E. Then the Z-module of invariant differentials on E'z
is free of rank one; let w be one of its two generators. Pulling it back to Xo(N), we get a
differential form ¢}w on Xo(NN). Now the newform f gives another differential 2mif(z)dz
on Xo(N). By the multiplicity one theorem, we have ¢tw = ¢ - 2mif(z)dz for some ¢ € Q*.
The absolute value of ¢ depends only on E; we denote this absolute value by cg. It is called
the Manin constant of E. The Manin constant is of interest because it plays a role in the
BSD conjecture (see Sections 1.2 and 2.2.1).

Conjecture 2.1.1 (Manin). ¢z = 1.
The following results are known towards this conjecture:
Theorem 2.1.2 (Edixhoven [Edi91, Prop. 2]). ¢z € Z.

Theorem 2.1.3 (Mazur [Maz78, Cor. 4.1]). If p is a prime such that p|cg, then p*| N
orp=2.

Theorem 2.1.4 (Raynaud [AU96, Prop. 3.1]). If 22{N, then 2%{cy.

Theorem 2.1.5 (Abbes-Ullmo [AU96, Thm. A)). Ifp is a prime such that p|cg, then
p|N.

Also B. Edixhoven has unpublished results (see [Edi89]) which say that the only primes
that can possibly divide ¢y are 2,3,5,7; he also gives bounds on the valuation of ¢, (inde-
pendent of E') with respect to these primes. Thus, from what is known so far, if a prime p
divides cp, then either p = 2 and 2| N, or p = 3,5,0r 7 and p? | N; moreover, there are
bounds (independent of E) on the powers of these primes that can divide cg.

To this, we add the following theorem, whose proof builds on the techniques of [AU96].

Theorem 2.1.6. If p is a prime such that p|cg, then p>| N or p|degds.

In view of what was known before, the only new information is that if 2| N, but 22N
and 2{deg¢y, then 2¢cy. For example, for the elliptic curve E = 46A1 of [Cre97, Table 1],
earlier one could only conclude that ¢z is 1 or 2. But, from [Cre97, Table 5], we find that
the modular degree of E is 5, and so by Theorem 2.1.6, ¢z = 1.

Let rz be the largest integer such that there exists a modular form g that has integral
Fourier coefficients, that is orthogonal to f with respect to the Petersson inner product, and
that satisfies g = f mod rg. It is called the congruence number of E and primes dividing it
are called the congruence primes of E.

Theorem 2.1.7 (Ribet [Zag85, Thm. 3], [AU96, Lem 3.3] ). degdy | r5; moreover,
if N is prime, then vz = degdy.



The congruence number and the modular degree are quantities of great interest: con-
gruence primes have been studied by Hida and Ribet, among others, and played a role in
Wiles’ proof of Fermat’s last theorem, and the modular degree plays a role in a reformulation
of the abc-conjecture, among other things.

K. Ribet pointed out to us that results regarding the relationship between congruence
primes and the modular degree can be obtained from the techniques in the proofs of multi-
plicity one theorems as in [Maz77, IL. 9] and [Wil95, §2.1]. Using these techniques, one can
show that if p is a prime such that p| 35— o5y then p | N (see [AS99a] for details). This result
also follows independently from [AU96, Prop 3.3 and Prop. 3.4].

Frey and Muller [FM99] raised the question whether r, = deg¢,. The answer, however,
is no. For example, consider the elliptic curve 54B1 of [Cre97]; call it F. By [Cre97,
Table 5]), degg, = 2; calculations of W. Stein show that r, = 6. Thus r, # degdy, and
3] de;%F . The problem, of course, is that 3% divides the level, which is 54. In all the examples
where W. Stein found that rz # deg¢y, it is always the case that if p is a prime such that
then p?| N. So one can reformulate the question of Frey and Muller as:

p | deg¢E ’

Question 2.1.8. If p is a prime such that p?{ N, then is it true that p{

TE 9
degdp
As an outcome of the proof of Theorem 2.1.6, we get the result:

Theorem 2.1.9. Let p be a prime such that p?{N. If p| = deg¢ then p|degey; in particular,
if p|rg, then p|degdr also.

Thus if N is squarefree, then the congruence primes divide the modular degree. For
example, from [Cre97, Table 3] (and using [Stu87]), we find that the eigenform corresponding
to the elliptic curve 26A shares a 2-congruence with the form corresponding to the elliptic
curve 26B; also we have 22 126. So we conclude that 2 divides the modular degrees of
the elliptic curves 26A and 26B. Indeed, on looking up [Cre97, Table 5], we find that the
modular degrees of 26 A and 26B are in fact equal to 2.

In Section 2.2, we generalize the notion of the Manin constant to quotients of Jy(N)
of arbitrary dimension associated to ideals of the Hecke algebra, and indicate which of the
above results apply in the general situation. Finally, in Section 2.3, we prove all the new
theorems mentioned in Sections 2.1 and 2.2.

2.2 A generalization of the Manin constant

Again let N be a positive integer. For simplicity of notation, we will often denote the
Jacobian of X((NN), usually denoted Jy(N), by just J. Let I be an ideal of T such that
T/I is torsion-free and let A be the quotient abelian variety J/IJ defined over Q. If R is
a Dedekind domain with field of fractions Q, and B is an abelian variety over Q, then let
Bp, denote its Néron model over R. If R is a subring of C, let So(R) denote the subgroup
of S2(T'o(N),C) consisting of modular forms whose Fourier expansions (at the cusp oo)
have coefficients in R (this is the same as the definition of S3(I'o(N), R) in Section 1.2: for
a proof, see [DDT94, §1.5]).



2.2.1 Motivation and definition

In the Birch and Swinnerton-Dyer conjecture for A, one considers the ratio of a certain
L-value to the real volume of A (see Section 1.1). This real volume is calculated by using a
set of generators for H’(Az, Q) /z)> Which is the group of global differentials on the Néron
model of A. But in calculations (see [AS99b]), or while proving formulas regarding the BSD
conjecture (see Sections 3.2, 4.1.1, and 4.2.1), it is easier to work with the volume obtained
by using a set of generators of Sy3(Z)[I], which is the group of cusp forms with integral
Fourier expansion annihilated by I.

We recall the definition of the generalized Manin constant from Section 1.2. Let
d = dim(A). A Q-basis for H(4,Q4 /Q) is given by the differentials corresponding to a set
of generators of the Z-module Sy(Z)[I]; denote this basis by {wi,...,ws}. If D is a genera-
tor of AYHO(Ag, Qil/z)’ then there exists ¢ € Q* such that D = ¢- Ajw; in H(Aq, Qfl‘l/Q)'
The absolute value of ¢ depends only on A.

Definition 2.2.1. The generalized Manin constant c, is the absolute value of the constant ¢
defined above.

If the abelian variety A is an elliptic curve, then ¢4 is the usual Manin constant. In
calculations or formulas regarding the Birch and Swinnerton-Dyer conjecture, one finds the
real volume with respect to So(Z)[I] and corrects it by ¢, (see Section 1.2) . Note that the
generalized Manin constant in this form was considered by Gross [Gro82, (2.5) on p. 222]
and Lang [Lan91, ITL.5, p.95].

2.2.2 A finer definition

We essentially follow the ideas in [Edi91, Prop. 2]. Let My(NN) denote the compactified
coarse moduli scheme M ([To(N)]) (see [KM85, 8.6]) and let My(N)° be the open part
of My(N) where the projection to SpecZ is smooth. By the Néron property, we get maps

My(N)® = Jz — Agz.

Call the composite map ¢, (we are abusing notation slightly here; however this map ¢4
induces the map ¢ from Section 2.1 when A is an elliptic curve E). It follows from [KM85,
Thm. 8.11.10] that the formal completion of My(N) along the (unramified) cusp oo is
Spf(Z[[¢]]). Thus we have a map

HO(Mo(N)°, Q0 y0/2) — 2l

which we denote by g-exp. Its image is contained in S3(Z), which is considered as a sub-
group of Z[[¢]] by taking the Fourier expansion of cusp forms (see [DDT94, Thm. 1.33], for
example). We have the series of maps:

oy -ex
H°(Az, Dy, 7) = H' (Mo(N)°, Qs (wyo/z) = Zll4ll-
The image of H’(Az, th/z) under the composite is contained in So(Z)[I] C Z[[q]]. Let

_ So(Z)[1]
47 gexp(¢5(HO (42,9, )




be the finite quotient group. It is in fact a module over T, and c, is just the order of Cy.
In particular, the above argument gives:

Theorem 2.2.2 (generalization of Thm. 2.1.2 of Edixhoven). ¢, € Z.

2.2.3 Results and a conjecture

At first, one might think that the generalized Manin constant should also be 1. But,
when A = Jy(NN), the constant c, is just the order of the cokernel of the map

HY(Mo(N)®, Qo vy0/2) = Sa(Z), (2.1)

and this map is not surjective in general. The order of the cokernel can be calculated using
methods in [DR73]. For example, B. Edixhoven informed us that for N = 33 the cokernel
has order 3, and thus c; 3, = 3. So the generalized Manin constant is not 1 in general.

B. Edixhoven informed us that if N is square-free, then the map (2.1) is surjective if and
only if there are no old-spaces in So(I'g(N), C). In the formula for the ratio of the special
L-value to the real volume for winding quotients of level a product of two distinct primes
(see Theorem 4.2.1), primes dividing the level appear in the numerator, and if the BSD
formula is true, then it is reasonable to expect that they cancel the Manin constant that
appears in the denominator (this was found to be the case in an explicit example). However,
in the corresponding formula for the winding quotient of prime level (see Theorem 3.2.2),
there is no reason to expect that the prime level divides any factor in the numerator. All
this led us to suspect that ¢, might be 1 for quotients of J"°V, where J"*V = J/J,q, where,
in turn, Jgq is the subvariety of J = Jy(IV) generated by the images of the degeneracy maps
from Jy(M) to Jo(N) for all M such that M |N, but M # N.

We have the following results in that direction:

Theorem 2.2.3 (Stein [AS99a], generalization of Thm. 2.1.3 of Mazur). If A is a
quotient of J™V and if p is a prime such that p|c,, then p?| N or p = 2.

Also, it is easy to see that [AU96, Prop. 3.1] generalizes to give:
Theorem 2.2.4 (Raynaud). If A is a quotient of J*% and 22{N, then 2(dm A+ e

Let A be a quotient of J"®V and let ¢o denote the quotient map J — A. There is a
canonical isomorphism J 2 J (see [Mil86¢c, Thm. 6.6]) and we shall use this to implicitly
identify J with J. Dualizing the map ¢9, we get the map ¢ : A= J ; recall that A denotes
the dual abelian variety of A. Then, by [Maz98, Prop. 8], the composite

A2 7254 (2.2)

is an isogeny. If G is a finite group, then by the exponent of G, we mean the smallest
integer n such that multiplication by n kills every element of G.

Definition 2.2.5. The modular exponent of A, denoted n,, is the exponent of the kernel
of the isogeny (2.2).

We have the following theorem, which we prove in the next section:
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Theorem 2.2.6. If A is a quotient of J*° and if p is a prime such that p>{ N, but p|c,,
then p|n,.

Question 2.2.7. Is the direct generalization of Theorem 2.1.5 of Abbes and Ullmo true,
i.e., if A is a quotient of J™V and p is a prime that divides c4, then does p divide N?

The theorems above give good reasons why the generalized Manin constant may be 1
when the level is square-free. But what if the level is not square-free? Computations of
[FpST99] involving Jacobians of genus 2 curves that were quotients of J™" found c, = 1
in 28 cases, including cases with quotients at the following non-square-free levels:

32.7, 3%2.13, 5%, 3%.5, 3.7% 5%.7, 22.47, 3.7

All the above facts have led the author and W. Stein [AS99a] to make the following

conjecture.

Conjecture 2.2.8. If A is a quotient of J™V, then c4, = 1.

Note that strong modular elliptic curves are quotients of J"V and so this conjecture
is a generalization of the conjecture of Manin (Conjecture 2.1.1). The hard part is to settle
the question whether primes whose squares divide N can divide the generalized Manin
constant. One approach to this problem is to construct good models for Xy(N) when N is
not necessarily square free; for example, this has been done in certain cases in [Edi89].

2.3 Proofs of Theorems 2.1.6, 2.1.9 and 2.2.6

We continue to us the notation introduced so far. In particular, A is the quotient
of J = Jo(N) under the action of an ideal I of the Hecke algebra. Also we will use notation
similar to the one in [AU96] since we will follow their techniques closely. If G is a finite
group, then in this section, we denote its order by # G. Recall that we had the maps

N ENYY
Pulling back differentials along ¢2 and ¢1, we get the maps:

3 ¢} ~
H(Ac, ) /c) = H(Jo, Qc) — HO(AC,Q}Z/C).

Let m denote the largest square that divides the level N and let S = Spec(Z[.1]). Then
My(N)g is smooth and semistable over S. Let 2 be the relative dualizing sheaf of My(N)s
over S. As in [AU96, § 2.1], we have an injection

g-exp : H'(My(N)s,Q) < S2(Z[%]) ;
this is not an isomorphism in general, but it induces an isomorphism
g-exp : HO(My(N)g,, Q) —> So(Fp) (2.3)

for each prime p that does not divide N (we are abusing notation slightly by calling different
maps g-exp; however it will be clear from the context which map we are using). We have

H®(Mo(N)s, Q) = Sy(Z[]) = $2(C) = H’(Je, 2 )c)-
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Applying ¢7 to the first two groups, we get an injection
¢1(H®(Mo(N)s, ) = ¢1(S2(Z[3])-

Denote the cokernel by C'. It is a finite group and, by (2.3), the only primes that can divide
its order are the primes that divide N. An easy generalization of [AU96, Prop. 3.2] gives

¢1(H"(Mo(N)s, ) = HO(A\&Q}?{/S)'

So we have an exact sequence

0— HO(A\S,Q%/S) — ¢1(S2(Z[L]) = C = 0.

Taking the quotient by the pullback of H°(A4g, 9}4/5) under ¢ o ¢1, we get

(A5, 9 ) #1(5,(Z12])
07 B4, Q) | R (As,0 g ¢ T (2.4)
Now
$1(S2(ZIED) N\ _ o #1(S2(2[1)))
# <¢’{¢§H0(AS,Q£/5)> = (Ca)m - # <¢»{(52(z)[1] ® Z[%])) ! (2.5)

where, if 7 is an integer, then i,, denotes the largest divisor of ¢ prime to m.
Let W(I) denote the orthogonal complement of S3(Z)[I] in S2(C) with respect to the
Petersson inner product.

Definition 2.3.1. Consider the group

( S2(Z) )
So(Z)[Il® (W(I) N Sy(Z)) )

Its order is called the congruence number of A, denoted r,, and its exponent is called the
congruence exponent of A, denoted m 4.

Note that this definition of the congruence number coincides with the definition in
Section 2.1 when A is an elliptic curve. Theorem 2.1.7 generalizes (e.g., generalizing the
proof of [AU96, Lem 3.3]) to gives us:

Theorem 2.3.2. n,|m,; moreover, if N is prime, then ny = m4. In particular, n,|r,.

As in the proof of [AU96, Prop. 3.3], we have the isomorphisms

Sy(Z) 1, S2(Z[5))
<52<Z)[I]@<W<I)nsz(z»>®Z[m] ' &@TezL) s (W) ns@L)
N ¢1(S2(Z[%))))
T HG@M e ZL])
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Thus

S2(Z)[1] ® Z[;))
Putting this in (2.5) and then using (2.4), we get

$1(S(ZHD) ) _
# ( 1 ) = (ra)m-

TN 1
H (AS’QX/S)

¢>{¢§HO(A57 9}4/5)

(Ca)m(ra)m = # #C. (2.6)

Recall (Definition 2.2.5) that n, was the smallest integer that annihilates the kernel of
the composite isogeny

RNy N (2.7)

If B and B’ are abelian varieties with an isogeny f : B — B’, and if n is an integer that
kills ker f, then using the fact that ker f C ker ng, where ny denotes the multiplication by n
map on B, we find that ny factors as ng = g, o f with g, an isogeny B’ — B (see [Mil86a,

§8])-

Definition 2.3.3. If B and B' are abelian varieties with an isogeny f : B — B’, then a
conjugate isogeny to f (or an isogeny conjugate to f) is an isogeny g : B' — B such that
g o f is multiplication by the exponent of kerf on B. By the discussion above, given any
isogeny, there always exists an isogeny conjugate to it.

Let ¢’ be an isogeny conjugate to the isogeny (2.7). So the composite

Ay a2

oA 1
H (AS’QE/S)
¢I¢§HO(ASﬂQ}4/S)

is multiplication by n 4. Using this, we see that some power of n, kills <
Thus we have

HO(Ag,0L )
Lemma 2.3.4. If p is a prime such that p divides # (Wf%) , then p|n,.

We already remarked that a prime can divide #C only if it divides N. The main
addition to the techniques of [AU96] is the following result that further controls the primes
that can divide #C:

Proposition 2.3.5. If A is a quotient of J"*V and p is a prime such that p?{ N, but p|#C,
then p|mn,.

We will prove this shortly, but let us first use this to prove the theorems from Sec-
tions 2.1 and 2.2.

Proofs of Theorems 2.2.6, 2.1.6 and 2.1.9. Theorem 2.2.6 follows easily, since if p satisfies
the hypothesis of the theorem, then p | (ca)m; so by equation (2.6), Lemma 2.3.4 and
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Proposition 2.3.5, it divides n,. Also if A = FE is an elliptic curve, as in Section 2.1, then
(e.g., see [AU96]):
0., Ol

ng = degpy = # qﬁgqﬁ’l‘HO(Eg,Q

B/s)

Equation (2.6) becomes
(ce)m(re)m = (degdr)m#C,

and, since degdg |15, we get

(ce)m(re/degdr)m = #C.

Using Proposition 2.3.5, we again easily get theorems 2.1.6 and 2.1.9. U

Also note that by equation (2.6), Lemma 2.3.4 and Proposition 2.3.5, we get the fol-
lowing generalization of Theorem 2.1.9:

Theorem 2.3.6. Let p be a prime such that p*{N. If p|r4, then p|n,.

It remains to give:

Proof of Proposition 2.3.5. We have the exact sequence
0 — ¢7(H*(Mo(N)s,9)) — ¢1(S2(Z[5])) = C — 0. (2.8)

We want to show that certain primes do not divide #C. We already know that the only
primes that can divide #C are those that divide N. So let p be a prime that divides IV.
Then considering the multiplication by p map applied to each term of the sequence of
maps (2.8) and using the snake lemma, we get:

0= Clp] = ¢i(H(Mo(N)s, ) ® Fp — ¢1(S2(Z[;;]) @ Fp = C @ F, — 0.

Suppose pfn,. Then to show that pt#C, i.e., that C[p] is trivial, all we have to show is
that the map

¢1(H(Mo(N)s,9Q)) @ F,
1 geexp (2.9)
¢1(S2(Z[%])) © Fy

is injective.
The key idea is to use the conjugate isogeny ¢’ (defined just after Definition 2.3.3). Let

¢" = ¢' o o. Then we have maps A ?% 7% A such that the composite is multiplication
by n4. Pulling back differentials, we get the maps

~ ¢”* ¢* ~
HO(A(LQII?[/C) — HO(JCaQ.lf/C) — HO(ACaQIIZ/C)a
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where the composite is again multiplication by n,. Note that these maps extend to the
Néron models over S and preserve the Z[%]—integral structure. Hence, applying these maps
to (2.9), we get:
11 % ¢*
FHH(Mo(N)s, ) 8 F, L5 H'(Mp(N)5, ) ©F, 5 $i(H'(Mo(N)s, %)) @ F,
4 g-exp { g-exp 4 gexp
* ¢”* ¢7 *
$(S2ZL))@F, > SAZp)eF, 5 $(S(Z[5]) ®F,

Suppose z is an element of the group ¢} (H®(Mp(N)s,)) ® F, in the top left corner
of the diagram above that is in the kernel of the map in (2.9), i.e., the left-most g-exp map
above. Then its image y = (¢"*)(x) in the group H°(My(N)s, ) ® F,, above maps to 0
in SQ(Z[%]) ® Fp, under the middle g-exp map (by commutativity of the first square). But
we have H*(My(N)s,Q) @ Fp =2 H*(My(N)w,, ). Suppose p?{N. Then My(N)r, consists
of two irreducible components. Now g-exp(y) = 0 means that y € H°(My(N)g,, Q) is zero
on the component that contains the cusp co. Since A is a quotient of J™V, the element x
is an eigenvector for the Atkin-Lehner involution Wy, and hence so is y. But Wy is an
involution that swaps the two components of My(N)r,. Hence y is zero on all of My(N)p,;
i.e., y = 0. Looking at the top line in the diagram above, we find that = maps to 0 under
the composite. But its image under this composite is n,z; so nyz = 0. Since p{n,, this
means that z = 0, i.e., the map (2.9) is injective, which is what was left to prove. O
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Chapter 3

The Birch and Swinnerton-Dyer
conjecture for the winding quotient
of prime level

We first define the winding quotient of Jy(IN) in Section 3.1. Then, in Section 3.2, we
give a formula that expresses the ratio of the L-value to the real volume for the winding
quotient of prime level as a rational number that can be computed. In Section 3.3 we present
some calculations using the formula just mentioned. Finally, in Section 3.4, we outline a
program to prove the BSD formula for the winding quotient. This chapter depends on
Chapter 1.

3.1 Definition of the winding quotient

Let N be a positive integer and again let X(/N) denote the usual modular curve of
level N. Let ‘H denote the complex upper half plane, and let {0,700} denote the projection
of the geodesic path from 0 to ico in H U P(Q) to Xo(N)(C). We have an isomorphism

H(Xo(N),Z) ® R — Home (H®(Xo(N), Q'), C),

obtained by integrating differentials along cycles (see [Lan95, § IV.1]). Let e be the element
of H1(Xo(N),Z)®R that corresponds to the map w — — f{O,ioo} w under this isomorphism.
It is called the winding element and was introduced by Mazur [Maz77, §I1.18]. Let T denote
the Hecke algebra (as in Section 1.2); it acts on H;(Xo(N),Z)®R. Let I, be the annihilator
of e with respect to this action. The quotient abelian variety J.(N) = Jo(N)/I.Jo(N) is
called the winding quotient of level N. It was introduced by L. Merel in his proof of the

uniform boundedness conjecture [Mer96a).

In this chapter, we take N to be a prime number p and denote J,(p) by J, for simplicity
of notation. Also, we use notation from Chapter 1.
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3.2 A formula for the ratio of the special L-value to the real
volume

One can easily check that L, (1) is non-zero and hence, by the work of Kolyvagin and
Logachev, J.(Q) is finite; so the first part of the Birch and Swinnerton-Dyer conjecture
is valid in this case. Also, the order of the Shafarevich-Tate group, III; , is known to be
finite. See [Mer96a, Prop. 1] and [KL89] for details of all of the above.

The Birch and Swinnerton-Dyer formula (Conjecture 1.2.1) becomes:

Conjecture 3.2.1.
Ly (1) 2 [Mlg|-cp(Je)

Q. Q)] 17(Q)]

Let H = Hy(Xo(p),Z), H, = H[L], I, = Anngl,, H, = H[L,], n = num((p — 1)/12),
and again let c¢;, denote the generalized Manin constant of J.. Let & denote the anni-
hilator of the divisor (0) — (c0), considered as an element of Jo(NN)(C), under the action
of T; it is called the Eisenstein ideal and was introduced by Mazur ([Maz77, §I1.9]). It
follows from [Maz77, 11.18.6] that Se C H.. We will show presently that the groups

H*/ (I_/I\e+ + H}) and H} /Se are finite. The main result of this section is the following
formula, which expresses the left-hand side of the formula in Conjecture 3.2.1 as a rational
number:

Theorem 3.2.2. With notation as abowve,

HE
Se

==
L;,(1) 1 REAR

Q. c; n

€

It was L. Merel’s idea that a formula like the one above should hold. Before stating
the proof of this proposition, we state some preparatory results.

First, we give some information on certain subgroups and quotients of H. If f is a
newform of weight 2 for T'y(p), then let [f] denote its orbit under the action of Gal(Q/Q).
Let Si;; be the Q-subspace consisting of forms in @©4¢;;Cg that have rational Fourier co-
efficients. The space Sj; is stable under the action of T ® Q; let T} denote the image of
T ® Q acting on Syy.

Lemma 3.2.3. The natural projection map ¢ : T ® Q = @ T}y is an isomorphism of
rings. The image of I, @ Q under ¢ 15 Orp.e.py=0 L5 and the image of I, @ Q under ¢ is
Orf1(e. 0 Tis)

Proof. The fact that the map T ® Q — @, T is an isomorphism is well known (e.g.,
see [DDTY94, §1.6]). The statement about the image of I. ® Q under ¢ follows from the
other statements and the fact that T has no nilpotents. So we only have to prove that the
image of I, ® Q under ¢ is @f.¢c.y=0T- Suppose t € I, ® Q. Then te = 0. Let f be a
newform, and let its eigenvalue for ¢ be A. Then (te, f) = 0, hence A{e, f) = 0. If (e, f) # 0,
then this means A = 0, i.e. tf = 0. This shows that the image of I, ® Q is contained
in ®f1.e,5y=0T 5. All we have to do is show the reverse containment. So suppose ¢ is an
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element of T such that ¢(t) € @ ey If f is a newform such that (e, f) # 0 and
g € Sy, then by definition tg = 0 SO (te,g) = 0. If f is a newform such that (e, f) = 0,
and g € Sy, then (te,g) = (e,tg) = 0 (because tg can be written as the linear combination
of the action of tf;, where f; are the the Galois conjugates of f, each of which pair to 0
with e). So te pairs to 0 with every element of Sj;; for all newforms f. Since the Si’s
constitute the entire space of cusp forms, and the de Rham pairing is non-degenerate, we
have te =0, i.e., t € I, ® Q. This finishes the proof. O

Corollary 3.2.4. dimoT ® Q = dimg(T ® Q)[I] + dimg (T ® Q)[L.].
Proof. Immediate from Lemma 3.2.3 and the fact that T ® Q has no nilpotents. O

Corollary 3.2.5. The natural map (I. ® Q) @ (j; ®Q) > T®Q given by (a,b) — a+b
18 an isomorphism.

Proof. Immediate from Lemma 3.2.3, using the isomorphism ¢. O

Remark 3.2.6.

1) S2(To(N), Q) is a free T @ Q-module of rank 1 (e.g., see [DI95, Prop. 12.4.14]).

2) H® Q is a free T ® Q-module of rank 2 (e.g. see [DDT94, Lemma 1.37]).

3) HT ®Q is a free T ® Q-module of rank 1 (e.g., see the proof of Lemma 1.37 in [DDT94]).

Let 7 denote the quotient map Jy(p) — J¢; since its kernel is connected, it induces a
sujection 7, : H — Hi(Je, Z).

Lemma 3.2.7. The kernel of the surjection H = Hy(J,,Z) is H,.

Proof. Let K denote the kernel of 7.

Claim 1: }/I\e CK.

Proof of the claim. Since J, = Jy(p)/I.Jo(p), all we have to show is that H, pairs to zero
with every cusp form killed by I, under the de Rham pairing (which is a perfect pairing).
Suppose h € He, considered as an element of H® Q. By Corollary 3.2.5, there are elements
i. € I,®Q and i, € I, ® Q such that i, +i. = 1 in T® Q. Thus h = (ze+ze)h = ich. Since
the de Rham pairing is equivariant under the action of T, this shows that h pairs to 0 with
every cusp form killed by I. O

Claim 2: dimql/'{\e ® Q =dimgK ® Q.
Proof of the claim. We have
dim J, = dimq H°(J, Q;./q) = dimgSa(T'y(N), Q)[Ie] = dimg (T ® Q)[I],
where the last equality follows by Part 1 of Remark 3.2.6. Hence
dimgK ® Q = 2(dim Jy(p) — dim J,) = 2(dimgT ® Q — dimg (T ® Q)[I.])-
Next, dimQI/fe ®Q =2 -dimg(T® Q)[E], by Part 2 of Remark 3.2.6. The claim now
follows from Corollary 3.2.4. O

Lemma 3.2.7 follows from Claims 1 and 2 above. O
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If A be an abelian variety over R, then let ¢ denote the action of complex conjugation
on A(C) as well as the induced action on Hi(A(C),Z). The following result is probably
well known, but we could not find a suitable reference; the proof given below was provided
by H. Lenstra.

Proposition 3.2.8. If A is an abelian variety over R, then the group of connected compo-
nents of A(R) is canonically isomorphic to H'(Gal(C/R), H1(A,Z)) and its order is equal
to the order of the 2-group H1(A,Z)" /(1 + ¢)H1(A,Z).

Proof. Denote Hi1(A,Z) by L and let V = LQR (so V = H;(4,R)). Now consider the
exact sequence
0—->L—->V—>AC)—=0

of (c¢)-modules, and take its Tate cohomology sequence. The group V' is uniquely divisible,
hence multiplication by any integer is an isomorphism on V', and so it is an isomorphism on
the Tate cohomology groups of V' as well. At the same time, by [AW67, §6, Cor. 2|, these
cohomology groups are finite, hence are killed by multiplication by the order. Thus V has
trivial cohomology. So the long exact sequence gives us:

0 — H((c), A(C)) = H'({c), L) — 0.

But H({c), A(C)) is, by definition, equal to A(C)*/(1 + c)A(C), and A(C)* = A(R).
So we get an isomorphism A(R)/(1 + ¢)A(C) = H'({c),L). Now A(C) is compact and
connected, so its continuous image (1 + ¢)A(C) is compact (hence closed) and connected as
well. Since (1 + ¢)A(C) is closed, A(R)/(1 + ¢)A(C) is an Hausdorff group (for example,
using [Bou66, Prop. 18 of § I11.2.6]); and since (14 ¢)A(C) is connected, A(R)/(1+¢)A(C)
has the same group of components as A(R) itself. But the group A(R)/(1+ ¢)A(C) is also
finite, since H'({c), L) is finite (using [AW67, §6, Cor. 2]). So A(R)/(1 + ¢)A(C), being
Hausdorff and finite, is discrete and equal to its own component group. Thus, the group of
components of A(R) is canonically isomorphic to H!({c), L).

So all we have to show is that the order of H'({(c), L) is equal to the order of Lt /(1+c)L.
Observe that the latter group is ({c), L), so it suffices to prove that the Herbrand quotient
of L is equal to 1. Now, by the semilinearity of the action of ¢ on V' (with respect to the
complex structure on V), it follows that ¢ has equally many eigenvalues +1 as —1 on V.
Now use [AW67, §8, Prop. 12] and the fact that L® Q = Z(c)¥™ 4 ® Q as (c)-representation
spaces (which can be checked by looking at traces), to conclude that the Herbrand quotient
of L is the same as that of Z(c)i™4, But Z(c)%™4 has Herbrand quotient 1. Hence so
does L, and that finishes the proof. O

Corollary 3.2.9. Jy(p)(R) is connected.

Proof. By [Mer96b, Prop. 5], Hi(Jo(p),Z)" = (1 + ¢)H1(Jo(p),Z). Then by Proposi-
tion 3.2.8, Jy(p)(R) has only one connected component. O

Lemma 3.2.10.

‘ (H/I/{\e)+ - COO(Je)-

g/,
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Proof. Since the level is prime, by [Mer96b, Prop. 5], we have H* = (1 + ¢)H. Now, by
Lemma 3.2.7, Hy(Je,Z) & H/H,, and so

1 H HT
A+ Q) H, ([, 2) = LTI o HT
(I+c)He H,

€

Thus
- HI(J67Z)+ _
- ‘(1+C)H1(Je,z) _COO(Je)’

(H/He)*
H+/H,"
by Proposition 3.2.8. O

As mentioned earlier, Se is a subgroup of H;.
Lemma 3.2.11. The group HJ /e is finite.

Proof. All we have to show is that dimgSe ® Q = dimgH ® Q. By [Maz77, Prop. 9.7],
T/S =2 Z/nZ; so dimgSe®Q = dimgTe® Q = dimgT/I.® Q = dimg T Q —dimg [, ® Q,
and dimgH ® Q = dimg(T ® Q)[I]. The lemma now follows from Lemma 3.2.3 and
Corollary 3.2.4. O

Also, note that using Corollary 3.2.4 and Part 3 of Remark 3.2.6, we find that the
group flﬁ'/(]'/f;L + H) is finite.
Let S = S2(To(p), Z)[I.]. We have a perfect pairing

T x S3(To(p),Z) —» Z (3.1)

which associates to (7', f) the first Fourier coefficient a;1(f |7T) of the modular form f|T
(see [Rib83, (2.2)]); this induces a pairing

P :T/I. x Sg — Z.
Lemma 3.2.12. The pairing 1 above is a perfect pairing.

Proof. Both T/I, and S, are free Z-modules; moreover by Lemma 3.2.3 and Part 1 of
Remark 3.2.6, they have the same rank. So it suffices to prove that the induced maps
Se = Hom(T/I,,Z) and T/I, — Hom(Se, Z) are injective. The injectivity of the first map
follows from the perfectness of the pairing (3.1). Suppose the image of T € T in T/I, maps
to the trivial element of Hom(S,, Z). Then a1 (f|7) = 0Vf € Se. Now if f is in Se, then so is
f| Ty for any Hecke operator T, (including Up). But then a,(f|T) = a1((f|Tn)|T) = 0 Vn.
Thus f = 0. Hence f|T =0Vf € S,. By Lemma 3.2.3, this shows that T € I,. Thus the
map T/I, — Hom(Se, Z) is injective and we are done. O

Finally, we are ready to give:

Proof of Theorem 3.2.2. Recall that we have the pairing (, ) : (HT®C)x S2(T'¢(p),C) — C
given by (v,f) — (v, f) = f7 2mif(z)dz. In the rest of this proof, at various points, we
will consider pairings between two Z-modules; unless otherwise stated, each such pairing is
obtained in a natural way from this pairing.
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For simplicity of notation, we denote co(Je) simply by co in this proof. Using
Lemma 3.2.7 and the discussion in Section 1.2, we get

Q. = cy, - oo - disc((H/H,)T x Se = C).

€

Next, by [Shi94, Thm. 7.14] (completed by [Car86]), we have L;_ (1) = [](e, f), where,
in this proof, the product symbol denotes the product over all elements f belonging to the
normalized eigenform basis for the C-vector space S2(I'o(p), C)[Le]-

Using all this, we get

LJe(l) _ i H<67 f) (32)

Q. € coo-disc((H/H)* x 8o — C)

We are going to replace (H/ I/{;)+ by another lattice. We need some preparation before
doing this. From Corollary 3.2.5, T® Q = (I, Q) & (j; ® Q). Thus if an element of H
is killed by both I, and fe, then it is killed by T, and then by Part 2 of Remark 3.2.6, it is
the trivial element. Thus H, N H, = ¢. So the the homomorphism H} — (H/H,)" is an
injection. The homomorphism

H*Y - (H/H.)*/H} (3.3)

—~+
has kernel (H, + H_.). But the map (3.3) is not surjective; consider the following map to

its cokernel: .
(H/He)"/HS

/\_|_ -
H*/(H, + HY)

(H/H.)*™ —

. — =t
It is surjective and has kernel H*/H, . Hence

= (H/He)*
(H/He)+ ~ H;— 3 4
HH/HT ( Ht ) (3-4)
[He o+ ut
Now we are ready to perform some change of lattices:
[, /) _ M) ‘ (H/T)* | ‘ H
disc((H/H,.)* x S, — C) disc(HS x Se = C) | g+/m" | 1H, + HF
Me.f) . | =S | |Hf
disc(Se x S, =+ C) & I-/I\eJr +HF | Se
‘H7+ | HE
i H<€, f) “ Coo - fl\e++H;— Se ’ (35)
disc(Te x S, — C) Te

Qe

where we got the first equality using (3.4) and the second equality by Lemma 3.2.10. Note
that

Te T
5l =[5l =m (36)
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where the latter equality is from [Maz77, 11.9.7].
The following claim is the key step of the proof.

Claim:

[I{e, )
disc(Te x S, — C)

~ 1. (3.7)

Proof of the claim. The perfect pairing 1) of Lemma 3.2.12 defines ¢, € T/I, ® C charac-
terized by (e, f) = a1(tef) Vf € Se. On the one hand,

I f):Hal(tef)z(S(jgcC te) [Jar(f) = _det t..

T/1.®C

On the other hand, by the perfectness of the pairing % and the canonical isomorphism
Te = T/I, the discriminant of the pairing Te x S, — C that associates to (te, f) the com-
plex number (te, f) coincides with the discriminant of the pairing T /I, xHom(T/I.,Z) — C
that associates to (¢,1) the complex number v (t.t), obtained by extending 1 by C-linearity.
The latter discriminant is also equal to det t. O
T/I.®C
Putting (3.7) and (3.6) in (3.5) and then using (3.2), we get

AT
Lp(V) _ 1 & +nt

Q. cy, n

|2
Qe

That proves Theorem 3.2.2. U

3.3 Calculations of certain factors from Section 3.2

We continue using notation from Sections 3.1 and 3.2. With the idea of studying the
conjectural Birch and Swinnerton-Dyer formula, we did computations (with the help of
Hf
Se

a computer) to calculate the terms ‘% appearing in Theorem 3.2.2, for
e +

HE
various primes p. For the former, we did calculations up to p = 397, and for the latter, up
to p = 1447. The computations were done using the theory of modular symbols; we describe

Ht d | 2L
mopmr| O Se]
The results of the calculations are mentioned in §3.3.3. These were used in [Aga99], and
will be used in Section 3.4 and Proposition 5.3.3. Only §3.3.3 will be referred to later, so the
reader primarily interested in the rest of the thesis can safely skip this section (Section 3.3).
In this section, we assume that the prime p under consideration is greater than 3 (if p < 3,

the calculations are vacuous anyway).

and ‘

this theory in §3.3.1. In §3.3.2, we describe algorithms to calculate ‘

3.3.1 Algorithms using modular symbols

Let N be any positive integer. The theory of modular symbols gives a presentation
of the group H;(X((N),Z) together with a description of the action of Hecke operators on
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the set of generators. The real vector spaces So(I'o(N),R) and H1(Xo(N),R) are dual in a
way that make the Hecke operators self dual; hence we can use modular symbols to obtain
information about S2(I'o(N),R) as a T-module (see [Cre97, §2.1.2]). Thus they are of vital
use in computations involving modular forms. We mention only the part of the theory
that we need for our calculations; in particular, we will take N to be a prime number. For
details, see [Ste00] and the references therein.

Let H denote the complex upper half plane. If o, 8 € P}(Q), then let {«, 3} denote
the class in H1(Xo(p), cusps; Z) of the image in X((p)(C) of the geodesic path from « to
in H UPY(Q). It is called a modular symbol. This generalizes the definition of {0,700} in
Section 3.1. Following [Man72], we have a map

To(p) \ SL2(Z) — Hi(Xo(p), cusps; Z)

given by g — {g0, goo}. The image of this map generates H1(X((p), cusps; Z) as a Z-module.
Next we have a bijection

To(p) \ SL2(Z) — PY(Z/pZ)
given by ( )
So we have a map
P'(Z/pZ) — Hi(Xo(p), cusps; Z). (3.8)

The image of F; \ {—1,1} under this map is contained in H;(Xo(p);Z), which sits inside
H,(Xy(p),cusps; Z) canonically; this image generates H1(Xy(p);Z) as a Z-module. If
x € Fp, then let [z] denote the image of = in Hy(X((p); Z) under (3.8). The symbol [z]
is called a Manin symbol.

We obtain the following presentation of the group Hi(X((p); Z) (see [Mer96b, §1.3], or
[Cre97, §2.2]):

generators:[z] for z € F; \ {—1,1}, where [z] is just a symbol

relations: [z] + [—1/z] —O Vz:xz # (—1/z) mod p

[z] =0 Vz:z=(—1/z) mod p

] +[-1-1/z]+[-1/(14+2)]=0 Vz:2# (-1 —1/z) mod p
[z] =0 Vz:z=(—-1—-1/z) modp

~2] +[~1/2] =0

where all the calculations in the brackets are done modulo p

We can express the winding element in terms of the Manin symbols using the formula
(see [Mer96b, Prop. 11 and Lem. 3]):

(p—1e=—) F(x)[a], (3.9)

where
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and where |y| denotes the integer part of y.

If i is a positive integer, then define 01(¢) = }°,; 450d. There are formulas for the
action of the Hecke operators on the Manin symbols. For our purposes, we only need the
formula below (see [Mer96a, Lem. 2]):

(T; — o1(i))e = — > [c/d). (3.10)

a,b,c,d€Z;a>b>0;d>c>0;ad—be=t

The set over which the sum is taken in (3.10) is finite and there is an algorithm to
generate it based on [Mer94, §3.3], which we indicate now (this was communicated to us
by L. Merel). First, consider all integers § such that 6 |i and § > 1. For each ¢, consider
k=1,...,(6 —1). For each such pair (4, k), construct matrices

ag bq

cg dg
ap bop \ [ i/ O
Cy do - k 1) )

Given the matrix for ¢ = j, let ¢ be the smallest integer greater than or equal to d;/c;.

Then define
(o an)-(a5)(58)
Cj_|_1 dj+1 Cj d] -1 0 ’

At each stage, the value of ¢, will decrease. We keep doing the inductive process while ¢, > 0
(thus the matrix for which ¢; = 0 is excluded from the set). Now repeat the procedure for
every pair (4, k) as above. The set of all ay, bg, ¢4, dq we obtain in the process are the a, b, c,d
(respectively) that satisfy the conditions a,b,c,d € Z; a >b>0;d > ¢ > 0; ad —bc =14
in (3.10) above. For example, for 4 = 3, the matrices we get are

10 10 d 2 1

13)'\23) *\12)
So (T3 — 01(3))e = [1/3] + [2/3] + [1/2], where the calculations in the brackets are done
modulo p.

inductively as follows. Choose

To do calculations involving the Hecke algebra or an ideal of the Hecke algebra, we
need a finite set of generators for the Hecke algebra as a Z-module. This is achieved in
Proposition 3.3.4. Before that, we briefly discuss the generation of the Hecke algebra over
certain fields. For Lemma 3.3.1 and Proposition 3.3.2, we take the level to be any positive
integer N, not necessarily prime.

Lemma 3.3.1. Let K denote the field Q or the field Fy where £ is a prime. Ifr is a positive
integer such that T1,...,T, do not generate T @ K as a K-vector space, then there exists a
non-zero cusp form over K whose first r Fourier coefficients are zero.
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Proof. Recall the definition of Sy(I'g(N), K) from Section 1.2. We have a perfect pairing
(TQ® K) x S3(I'y(N),K) — K given by (T, f) — ai1(f | T) (see [Rib83, (2.2)]). Since

Ti,...,T, do not generate T ® K as a K-vector space, there exists a non-zero cusp form f
over K such that f is orthogonal to T1,...,7T, under this pairing, i.e., such that its first r
Fourier coefficients are zero. ]

Let g denote the genus of X((N). We may assume g > 1, since otherwise the theory is
vacuous.

Proposition 3.3.2. Let K denote Q or Fy where L1 N. Then T ® K is generated as a
K-vector space by Th,...,Tog_1.

Proof. Suppose not. Then, by Lemma 3.3.1, there is a cusp form f whose first (2g — 1)
coefficients vanish. But that gives a differential on Xo(N)x that vanishes to order at least
(29 — 1) at oo, which is forbidden by the Riemann-Roch theorem. O

Let us revert to the assumption that the level N is a prime p. In that case, we can
improve on Proposition 3.3.2 to get the following result, communicated to us by M. Baker:

Proposition 3.3.3. T ® Q is generated as a Q-vector space by Ty,...,Tg.

Proof. We may assume that g > 2, since for ¢ = 1, the result is already contained in
Proposition 3.3.2. Suppose the result is false. Then by Lemma 3.3.1, there is a cusp form f
over Q whose first g coefficients vanish. But that gives a differential on Xy (p) that vanishes
to order at least g at co. This shows that co is a Weierstrass point [Atk67] on Xy(p). But
that cannot happen since the level is a prime, by [Ogg78]. This contradiction proves the
lemma. O

Our calculations showed that 71, ..., T, do not generate T over Z in general (e.g., when
the level is 53, we found that T7,...,T, generate a subgroup of T of index 3). Let r denote
the integer part (or floor) of (p + 1)/6. A generating set for T over Z is provided by the
the following result (communicated to us by K. Ribet; for a generalization, see [Ste00]).

Proposition 3.3.4. The Hecke algebra T is generated as a Z module by T1,...,T,.

Proof. Suppose not. Let £ be a prime that divides the order of the quotient T/(T1,...,T;),
where (T1,...,T,) denotes the sub Z-module of T generated by T1,...,7,. By a simple
group theoretic argument that uses the fact that T is a finitely generated abelian group, this
implies that T /4T is not generated as a Fy-vector space by 71 mod /, ..., T, mod £. Then,
by Lemma 3.3.1, there exists a non-zero cusp form over Fy whose first  Fourier coefficients
are zero. But then, by [Stu87, Thm. 1], f = 0 mod ¢, i.e., f = 0, giving a contradiction. [

It is not clear if T7,...,T5;_1, which generate T ® Q over Q, generate T over Z in
general. This might be useful for speeding up calculations since 2g — 1 < r; however
r—(2g—-1)<3.
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3.3.2 Algorithms to calculate the factors

using modular symbols.

HE
and ‘ 3

. +
We now describe how to compute | —£—
H.+HSf

€

+
First we describe the calculation of ‘g‘; ‘ Note that since HT/H) is torsion free,

H /e is just the torsion subgroup of H* /Se.

Note that complex conjugation on the C-valued points of Xy(N) (a variety over Q) is
the same as the involution on Xy(NV)(C) induced by the involution * : z — —Z on H, under
the quotient map HUP!(Q) — X(N)(C). This is because the rational structure on X,(N)
is given by modular functions that have rational Fourier coefficients, and * acts as complex
conjugation on ¢(z) = exp(2miz). Using this, one can show that if ¢ denotes complex
conjugation on H, then c takes [z] to [-z]. Also, in our case (prime level), H* = (1 +c¢)H
(by [Mer96b, Prop. 5]). Thus H™ is the subgroup of H generated by [z] +[—z]. To find the
generators of the subgroup Je, we use the Lemma below.

Lemma 3.3.5. The ideal S is generated as a Z-module by the set consisting of the element n
and the elements (T; — o1(3)) fori=2,...,r.

Proof. Let S’ denote the Z-submodule of T generated by n and the elements (T; — o1 (7))
for i = 2,...,r. Then, by [Maz77, § IL.9], &' C &. Consider the map of Z-modules
¢ :Z — T/Y' given by 1 — Ti. Now T1,Ty — 01(2),...,T, — o1(r) generate T as a Z-
module and so T/’ is generated as a Z-module by T7 = ¢(1); thus the map ¢ is surjective.

Also, we have nZ C ker¢. Thus we a sequence of surjective maps Z L\ /S — T/S. The
kernel of the first map contains nZ, but on the other hand, the kernel of the composite is
nZ, by [Maz77, 11.9.7]. Hence §' = S. O

So Se, as a subgroup of H, is generated by the set consisting of the element ne and the
elements (T; — 01(i)) - e for ¢ = 1,...,r. To express these elements in terms of the Manin
symbols, we use (3.9) and (3.10) from § 3.3.1. Note that H is a free Z-module and that we
can divide out formula (3.9) by (p — 1)/n to calculate ne only if we write the right-hand
side of (3.9) in terms of a basis for H.

So, to calculate Ht/Se, we first find a basis for H; then we quotient out by the relation
for ne obtained from (3.9), and by the relations (3.10) for ¢ = 2,...,7; call the resulting
quotient G. Finally, H* /Se is the subgroup of G generated by the images of the elements
[z] + [—z] for all z. All this can be done using algorithms for the Smith normal form (for
example, see [Coh00, §2.4.4]; these algorithms were pointed out to us by B. Sturmfels). We
used Maple and the LiDIA library (in C++) to do the calculations.

In [Aga99, Thm. 1], we used the result that 7 divides ‘g‘z ‘ for p = 1091, which could
not be justified there due to lack of space. To prove this, one can simplify the algorithm
using the two facts:

1) We have H™ < H/H_ with cokernel of order a power of 2, where H_ is the subgroup
generated by [z] — [—z] for all z, and
2) If 3" is the Z-submodule of T generated by the set consisting of (p — 1) and the elements
(T; —01(@)) for i = 2,...,r, then §” C & with index dividing (p —1)/n, and the only primes
that can divide (p — 1)/n are 2 and 3.
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Using this, and some simplifications in the relations, we have that for the prime p =
1091, the group given by:

generators:[z] for z € F); \ {—1,1}, where [z] is just a symbol

relations: [z] +[-1/z] =0 Vz
[z] +[-1—-1/z]+[-1/(1 4+ 2)] =0 Vz
[-2]+[-1/2] =0
[z] —[-z] =0 Vz
Y1 Fla)z] =0
DoapcdeZiasb>0:d>c>0ad—be=ilc/d] = 0 for i =2,...,r,

where all the calculations in the brackets are done modulo p,

has torsion subgroup that differs from H_. /e only by powers of 2 and 3. Hence we can
use it to check that 7 divides the factor

He
Qe

Next, we can calculate ‘T as follows. We already know the generators of Se.

Next we find the generators of the kernel of the map TR Q — H ® Q given by t — te. For
this, we use the fact that 71,To —01(2),...,Tg—o01(g) generate T®Q (by Proposition 3.3.3)
and do calculations using formulas (3.9) and (3.10). Then we clear the denominators of the
set of generators of the kernel; call the resulting set S. Let G be the subgroup of H generated
by th, where ¢ runs over all elements of S and h runs over the set of generators of H. Now
G is a subgroup of I/I\e with finite index, but not necessarily equal to I/J\e To remove this

problem, use the fact that H/ H, is torsion free: thus ‘%‘ is the ratio of the order of

H. +Se
the torsion subgroup of £ + to the order of the torsion subgroup of G+ +<\ , both of which
can be computed.
Finally, note that we have an exact sequence

Hf HT HT

0= =5 = —% - — — 0.
S¢  H, +Se H, +HS
Ht

Hence to get the factor appearing in Theorem 3.2.2, we only have to divide

—+F
H +HF
HS
Se |°

‘He +Se

3.3.3 Tables of calculations

We computed the structure of HJ /Se for prime levels up to 1447. The results appear
in Table 3.1; in that table, a sequence of integers ni,...,n, in the second column denotes
the abelian group Z/n1Z x --- x Z/n,Z. Only the levels for which the group was found to
be non-trivial are reported. Thus, for example, Table 3.1 tells us that the group H.) /Se is
trivial for level 17, and for level 997, it is isomorphic to Z/3Z x Z/24Z.

We calculated ‘

for prime levels up to 397. The only level for which an odd

A+
+Qe
was 389, where 52 was a factor. So the odd part of ‘AHiJFHJF

prime divided ‘ ff’Li

e +Se
is 52/5 = 5.
We will interpret the results of our calculations in the next section.



Table 3.1: Nontrivial H. /e for prime levels < 1447.

level structure

359 2,2
389 10
433 7

563 13
571 12
643 8

709 11
821 4
887 4,4
911 4,4,4
997 3,24
1061 151
1091 49
1163 4
1171 22
1229 16
1231 4,4,4
1283 25
1361 4,4,4
1429 25
1433 2,2
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3.4 An approach to the Birch and Swinnerton-Dyer formula

Recall the notation from Sections 3.1 and 3.2. In this section, we outline a program to
prove the BSD formula for quotients of Jy(N) whose special L-value is non-zero. Any such
quotient is a quotient of J,(N); so the winding quotient is the first interesting quotient from
the point of view of the BSD formula for quotients of analytic rank zero. Hence we focus
on the winding quotient Je(/N) and for simplicity assume that N is a prime. The contents
of this section are highly speculative and should be taken with a grain of salt!

Let p be a prime and again let J. = J¢(p). If we compare Theorem 3.2.2 to the BSD
formula (Conjecture 3.2.1), then we get:

‘ H+ Jipg
ML l-ep(Je) 2 1 @ yud| IS¢l (3.11)

1T(Q)] - [Te(Q)] € n

Thus the BSD formula for J,(p) reduces to formula (3.11) above. In the rest of the section,
we describe a plan to prove this formula by examining the terms that appear in it.

e Mordell-Weil groups:

Recall that since J.(Q) is finite, so is je(Q) The following result was pointed out to
us by L. Merel:

Proposition 3.4.1 (Merel). |J.(Q)| = n.

Proof. We have Jo(Q) C Jo(p)(Q)tor- By [Maz77, § I1.11 and I11.1.2], Jo(p)(Q)tor is cyclic
of order n and is generated by the divisor class of ¢ = (0) — (c0). So it suffices to show that
¢ € J.(Q). Now J, = Jo(p)/IeJo(p). Hence 71.(Q) [n] can be seen as the group of elements
in Jy(p)(Q)[n] which are orthogonal to (I, - Jo(p))(Q)[n] under the Weil pairing. Since the
Hecke action is adjoint with respect to the Weil pairing, all we have to show is that I.c = 0;
but this follows because I, annihilates e, and e maps to ¢ under the universal covering map

H®R — Jy(p)(C) (see [Maz77, § 11.18.5]). O
Also, L. Merel communicated to us the following result (see [Oes]):
Proposition 3.4.2 (Merel, Oesterlé). |J.(Q)| = n.

Sketch of the proof. Using [Maz77, 11.18.10] (see also a complement given in [Mer96b, §5.1]),
we get I, C N,>;¥". Using this condition, one observes that the proof of [Maz77,
I11.1.4] generalizes to give Jo(p)(Q)tor = Je(Q). Then the result follows from the fact
that |Jo(p)(Q)sor| = 7 (again by [Maz77, 111.1.2, § I1.11]). O

e Generalized Manin constant:

We already conjectured (Conjecture 2.2.8) that ¢,, = 1. The only prime that can
divide ¢;, is 2 (Theorem 2.2.3). So let us assume c;, = 1 for now; in any case the results
will be valid if we stay away from the prime 2.

e Congruence primes:
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Let S = S9(T'o(p),Z). Recall from Definition 2.3.1 that the congruence number
of Jo is r;, = # m), where W(I,) is the orthogonal complement of S[I]

in S9(TCy(p), C) with respect to the Petersson inner product. The primes that divide r,, are
called the congruence primes of Je.

= #(se )

Proof. Clearly S[I,] C (W(I.) N S). Counting dimensions using Corollary 3.2.4 and the
fact that S ® Q is a free T ® Q module of rank 1 (Part 1 of Remark 3.2.6), we get
S[I] = (W(I,) NS). The lemma now follows from the definition of . O

Lemma 3.4.3.

Lemma 3.4.4. If a prime £ is not a congruence prime of J., then
TRZ = (I.RZ) & (I ®Zy).

Proof. By Corollary 3.2.5, I, N f; = {0}. It follows, for example from [Dia89, §2], that

and that we have a canonical isomorphism

T_ F/L&T/I
Lel T

; (3.13)

induced by the projection maps. The lemma follows from equations (3.12) and (3.13), and
Lemma 3.4.3. 0

Lemma 3.4.5. HT ® Z; = T ® Z; for every prime £ # 2.

Proof. By [Maz77, 11.15.1, 11.16.3] (see also [Til97, §3]), H1(Xo(p),Z)m is free of rank 2
over T, for every maximal ideal m of T with residue characteristic unequal to 2. The
lemma now follows from the discussion in §I1.18 of [Maz77]. O

e Order of the arithmetic component group: Recall that if A is an abelian variety
over Q and p is a prime number, then ¢,(A) = [AF,(Fp) : .A%p (F,)], where A denotes the
Néron model of A over Z and A° denotes the largest open subgroup scheme of A in which
all the fibers are connected. The group Ar, /.A%p is called the component group of A at p
and is denoted by ®,(A). The group of Fp-valued points of ®,(A) is called the arithmetic
component group of A at p. We have a short exact sequence of group schemes

0= A, = Ar, = ®5(4) =0,
which gives us the long exact sequence of Galois cohomology groups:

0— A%‘p (Fp) = Arp,(Fp) — @,(A)(Fp) — Hl(GaI(Fp/Fp)a A%‘p (Fp))-
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By [Lan56], the group H'(Gal(F,/F,), A%p (F))) is trivial. Hence c,(A) is just the order of
the arithmetic component group of A at p.

Recall the discussion around Definition 2.3.3: composing the quotient map 7 : Jy(p) —
J. with its dual map 7 : J, — Jo(p) (where we identify Jo(p) with Jo(p) using the usual

canonical isomorphism, e.g., see [Mil86c, Thm. 6.6]), we get maps J. 5 Jo(p) = J, such
that the composite, call it 7, is an isogeny. Recall that, by definition, n;_ is the exponent
of ker 7. Then using the fact that kert C kern;_, where n;, also denotes the multiplication
by n,, map on J., we find that n,, factors as n;, = 9’ o ¢ with ¢/ an isogeny J, — Te
(see [Mil86a, §8]). We can easily check by the definition of 1’ that 1 o ¢’ is the multipli-

cation by n; map on J.. Thus the composite J, ﬂ je KN Jo(p) 5 J. is multiplication
by n,,. This induces maps ®,(J.) = ®,(Jo(p)) = ®,(Je) such that the composite is mul-
tiplication by n,,. Thus multiplication by n,, kills the cokernel ®,(J.)/7(®,(Jo(p))). By
Theorem 2.3.2, the only primes that can divide n;, are the congruence primes of J.. Thus,
“away” from the congruence primes of J, the map ®,(Jo(p)) = ®p(Je) is surjective.

If E is an optimal modular elliptic curve, it is known that the map ®,(Jo(p)) = ®p(F)
is surjective. There are two approaches to this: one strategy is to use Ribet’s level-
lowering theorem (communication of K. Ribet); another strategy (see [MO89, Cor. 2,
p. 183]) is to use explicit formulas for the order of the component group given by Ri-
bet (letter to J.-F. Mestre) (these formulas have been generalized to higher dimensional
quotients by W. Stein [Ste00]). Also, calculations of W. Stein always found that the map
@, (Jo(p)) = ®,(Af) was surjective, where Ay denotes the quotient of Jy(p) associated to
a newform f (see Section 4.1.1). By generalizing the proof for elliptic curves, one hopes to
show that the map ®,(Jo(p)) = ®,(Je) is surjective. Since |®,(Jo(p))| = n, where again
n= num(pl;;), this would show that ¢,(Je) divides n. In any case, this is true “away” from
the congruence primes of J,.

For simplicity, assume that c,(Je.) = n and ¢;,, = 1. Then according to the BSD

formula, the order of the Shafarevich-Tate group of J. is the product of ‘ﬁ and
[ + €

+ .
‘%‘;— ‘ Let us examine the nature of these two factors.

e The factor ‘ﬁ\fﬁ

| From Lemmas 3.4.4 and 3.4.5, we find that the only primes
€ + €
that can divide the factor ‘f_ffi_:}ri- are the prime 2 and the congruence primes of J.

For example, the only prime level less than 397 for which our calculations (Section 3.3.3)

detected an odd prime that divided ‘ﬁfi;ﬁ was the level 389, where 5 divided this factor;

and in this case, we indeed find that 5 is a congruence prime of J, (see [AS99b]).

Mazur [Maz98] showed that if E is an elliptic curve such that its Mordell-Weil rank
is zero and such that the newform corresponding to E is congruent modulo a prime £
to the newform associated to another elliptic curve whose Mordell-Weil rank is non-zero,
then, under certain mild hypotheses, ¢ divides |IIIg|. In [AS99b], this result is extended
to quotients of higher dimension in certain cases. For example, one finds that 5 divides

[T 5, (3895 s0 ‘# divides |III; | away from the prime 2, for level 389. In view of

€
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this, one hopes to show that the factor ﬁfi% divides |1z, |.
+ € €
e The factor ‘Ié; This factor is quite mysterious and deserves further study. In fact,
+
the mystery behind the BSD formula probably lies in this factor. We computed ‘Iéee ‘ for

several primes p (see Section 3.3.3). We found that for all prime levels up to 1447, except

for the levels 1091, 1283 and 1429, whenever a prime divided ‘g{ ‘, it was a congruence
prime of J,. For the level 1091, there was a congruence between the newform corresponding
to Je(1091) and a newform at level 2-1091. Similar calculations for the levels 1283 and 1429
have not been done yet.

So it is possible that the primes that divide the second factor are either congruence
primes of J, or primes of congruence between a modular form killed by I, and forms of

higher levels (that have L-value equal to zero). Thus, by using the techniques mentioned
AT divides |IIT, .

He' +H}
e Upper and lower gounds on |IIT; |: Our strategy above might show that the
conjectural order of I11 ;, as predicted by the BSD formula divides the (actual) order of I11 ;..
See [AS99b] for some results in this direction. For example, one can show that the odd part
of the BSD-conjectured order of L1 ;, (339, which is 25, divides the actual order of II1 5, (359).
As mentioned in the introduction, one can use Euler systems to bound the p-primary
part of the order of III;, from above in terms of the BSD conjectural order, for almost
every prime p (see [Rub98, Cor. 8.9]: the results generalize to abelian varieties; instead of
Prop. 8.3 in [Rub98], one has to use the results in [Rib97]).
So one hopes to show that the BSD conjectural order of I11;, bounds the (actual) order
of I11;, from below as well as from above (in particular cases, for example) and thus prove
the BSD formula.

+
above for the factor , one may be able to prove that ‘%
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Chapter 4

Formulas for the ratio of the
special L-value to the real volume
for certain other quotients

In this chapter, we generalize the techniques of Section 3.2 to prove formulas expressing
the ratio of the special L-value to the real volume as a rational number for certain other
quotients. We do this for the quotient associated to a newform in Section 4.1 and for the
winding quotient of level a product of two distinct primes in Section 4.2. In Section 4.3, we
indicate other possible extensions. Sections 4.1, 4.2 and 4.3 are independent of each other.

4.1 Quotients associated to newforms

We express as an easily computable rational number the ratio of the L-value to the
real volume for the quotient of Jy(N) attached to a newform (by Shimura). This formula
is used to do calculations regarding the Birch and Swinnerton-Dyer conjecture in [AS99b],
which extend the calculations in [Cre97], for quotients that are elliptic curves, to quotients
of higher dimension. This section depends on Section 1.2.

4.1.1 Introduction and results

Let N be a positive integer. Let f be a newform for ['g(N) and let a,, (f) denote its nth
Fourier coefficient. Then the series ) ° aﬁl—(sf) converges absolutely in s for Re(s) > 3/2
and can be analytically continued to the entire complex plane [Shi94, Thm. 3.66]. It is called
the L-function of f and is denoted L(f,s). Suppose L(f,1) # 0. Recall the definition of the
Hecke algebra T from Section 1.2. Let Iy be the annihilator of f under the action of T. Let
Ay denote the quotient abelian variety Jo(N)/I;Jo(N) over Q, which was introduced by
Shimura in [Shi94]. We call it the quotient of Jy(IN) associated to the newform f . Recall
the definition of the special L-value L,(1), the Manin constant c, ;» the real volume Q4 ,
and ceo(Ay) from Section 1.2. We are interested in giving a formula for L4,(1)/S24,, which

is the left-hand side of the Birch and Swinnerton-Dyer formula (Conjecture 1.2.1).
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If V is a finite dimensional vector space over R, then a lattice L C V is a free abelian
group of rank equal to dimV such that RL = V. If L,M C V are lattices, the lattice
index [L : M] is the absolute value of the determinant of an automorphism of V' taking L
isomorphically onto M.

Recall the definition of the winding element e from Section 3.1. Note that by the Manin-
Drinfeld Theorem (see [Lan95, Chap. IV, Thm. 2.1] and [Man72]), e € Hi(Xo(N),Z) @ Q.
Also, since complex conjugation on H;(X((N),Z) is induced by the map z — —Z on the
complex upper half plane, we see that e is invariant under complex conjugation. Thus
Te C Hi(Xo(N),Z)* ® Q. Let f1 = f, f2,--., fqa be the Galois conjugates of f (for some
integer d) and let ® denote the map H;(Xy(N),Z)t ® Q — C? given by mapping a cycle v
to {[, fi,-.., [, fa}. Then ®(H1(Xo(N),Z)") and ®(Te) are both invariant under complex
conjugation, and are lattices in R? C C? ( ®(Te) is a lattice since L(f,1) # 0).

We have the following formula, which was conjectured by W. Stein based on some
calculations:

Theorem 4.1.1. With notation as above,
La,(1) _ [@(Hy(Xo(N),Z)") : 9(Te)]
Qa, Ca; * Coo(Af)

We prove this Theorem in § 4.1.3. The proof is an adaptation of the proof of Theo-
rem 3.2.2. See also [AS99b] for a similar proof. This formula was used for doing computa-
tions regarding the Birch and Swinnerton-Dyer conjectural formula in [AS99b].

Let C denote the cuspidal subgroup, i.e., the subgroup of the degree zero divisors
on Xo(N) supported on the cusps and let n denote its order (this is consistent with the
definition of n in Section 3.2, since when N = p is a prime, the order of the cuspidal
subgroup is num(pl;l)). We show:

Proposition 4.1.2. With notation as above,
n - [®(H;(Xo(N),Z)T) : ®(Te)] € Z.

We prove this in the next section. This result ties in very well with the Birch and
Swinnerton-Dyer conjectural formula. See [AS99b] for details and a stronger result which
says that the number n above can be replaced by the order of the image in Af(Q) of the
point (0) — (00).

4.1.2 Proof of Proposition 4.1.2

Let  denote the annihilator of the divisor (0) — (c0), considered as an element
of Jo(N)(C), under the action of T. An easy adaptation of [Maz77, I1.18.6] shows that
Qe € H1(Xo(N),Z)". So we have

[2(H1 (Xo(N),Z)") : (Se)]
[®(Te) : (Te)] ’
where both the numerator and the denominator on the right-hand side are the usual indices

of subgroups of groups, and hence are integers. So, to prove Proposition 4.1.2, it suffices to
prove that [®(Te) : ®(Je)] divides n.

[@(H1(Xo(N),Z)") : ®(Te)] =
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We have the surjection T — ®(Te)/®P(Se) given by taking ¢t € T to the coset contain-
ing ®(te). Clearly S is in the kernel. Hence we get a surjection T /S — ®(Te)/P(Se). This
shows that [®(Te) : ®(Je)] divides the order of T /. So it suffices to prove that the order
of T/ divides the order of C.

We have the map T — C, given by taking ¢t € T to ¢((0) — (c0)). By the definition
of ¥, the kernel of this map is §. Thus, we have an injection T/Y — C, showing that the
order of T/ divides the order of C, thus finishing the proof.

4.1.3 Proof of Theorem 4.1.1

We continue to use the notation from § 4.1.1. Theorem 4.1.1 follows immediately from
Proposition 4.1.4 and Proposition 4.1.6 below.

We shall first replace the lattice index in Theorem 4.1.1 by another index. Recall that
if f € S2(I'o(N), C), then wy is the differential on Xo(NN)(C) given by 27if(z)dz

Lemma 4.1.3. The kernel of the composite
Te‘—)Hl(XO(N) ) ®Q—>(H1(X0( ) )+/ke1@) Q
is I;e, where the second map above is the natural projection map.

Proof. If t € Iy, then [, wy, = [ wyr, = 0 Vi, and thus I;e is in the kernel. Conversely if
t € T is such that e is in the kernel, then j;e wy = 0. Now f is an eigenform for all Hecke
operators; let the eigenvalue for ¢ be A. Then we have A fe wy = 0, which means that A = 0,
since fe wy = L(f,1) #0. Thus tf = Af =0, i.e., t € Iy, and so the kernel of the map
mentioned above is contained in I;e. That proves the lemma. O

Thus we can think of Te/I;e as a lattice in (H1(Xo(N),Z)" /ker®) ® R. Let 7 de-
note the quotient map Jo(N)—Ay. Since its kernel is connected, it induces a surjection
H(Jo(N),R)—H;(Af,R). The standard immersion X,(N) — Jo(IN) obtained by sending
the cusp oo to 0, gives us an isomorphism H;(Xo(N),R) = H(Jy(N),R). Combining the
two maps above, we get a surjection 7, : Hi(Xo(N),R) — Hi(Af,R).

Proposition 4.1.4. The map 7, induces an isomorphism
Hy(Xo(N),Z)" /ker® = H,(Ay,Z)7,
and we have
[®(H1 (Xo(N), Z)") : &(Te)] = [Hi(Af, Z)" : m.(Te/Ie)],
where Hi(Af,Z)* and m.(Te/Ise) are considered as lattices in Hi(Ap,R)*.
Proof. From Lemma, 4.1.3, we have
[B(H (Xo(N), Z)*) : B(Te)] = [H1 (Xo(N), Z)" /kerd : Te/I,e], (4.1

where the groups on the right-hand side are considered as lattices in the R-vector space
(H1(Xo(N),Z)" [ker®) @ R.
Let «y be an element of H1(Xy(N),Z). Then
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v € ker m, <= fmvw =0 Vwe HO(Af,QAf/C)
_ 0

— fww*(w) =0 YweH(A7,Q4,/c)

= [w,=0 Vi

<= v € ker®.
Combining this with the fact that =, is surjective, we see that m, induces an isomorphism
Hl(Xo(N), Z)"’/ker@ = Hl(Af, Z)+

Applying 7, to the right-hand side of (4.1), we get the proposition. O

Let Sy = So(To(IN),Z)[I]. Recall that we have a perfect pairing
T x S2(To(p),Z) - Z (4.2)

which associates to (T, f) the first Fourier coefficient a1(f | 7") of the modular form f|7T
(see [Rib83, (2.2)]); this induces a pairing

’lﬂ:T/IfXSf—)Z.

Lemma 4.1.5. The pairing 1 above is a perfect pairing.

Proof. Both T/I; and Sy are free Z-modules of the same rank. So it suffices to prove
that the induced maps Sy — Hom(T/I;,Z) and T/I; — Hom(Sy,Z) are injective. The
injectivity of the first map follows from the perfectness of the pairing (4.2). Suppose the
image of T' € T in T/I; maps to the trivial element of Hom(Sy,Z). Then a(f|T) = 0.
But f is an eigenform for T'; suppose the eigenvalue is A. Then 0 = a1(f|T) = a1 (f) = A
Thus f |T = 0, i.e., T € Iy. Thus the map T/I; — Hom(Sy,Z) is injective and we are
done. O

Next, we relate the new lattice index in Proposition 4.1.4 to the special L-value:

Proposition 4.1.6.

Qa, Ca; " Coo(A)

La,(1) _ [Hi(Ag, Z)* : 7 (Te/Te)]

Proof. The proof is similar to the proof of Theorem 3.2.2. Recall that we have the pairing
(H1(Xo(N),Z)" ® C) x 82(I'o(N), C) — C given by (v:#)r, f) = [, wy. In the proof,

at various points, we will consider pairings between two Z-modules; unless otherwise stated,
each such pairing is obtained in a natural way from this pairing.

Now La,(s) = [I; L(fi, s), by [Shi94, Thm. 7.14] and [Car86]. Recall from Section 1.2
that we have Q4, = ¢4, - coo(Af) -disc(H1(Af,Z)* x Sy — C),. Hence

La, (1) _ Iife, fi)
Cag * Coo(Af) - fTAf ~ disc(H1(Af,Z)* x Sy — C)
Hi<eafi>

- disc(Te/I;e x Sy — C) [Hi(Af,Z)" : m(Te/Ise)] .

The proposition now follows from:

Claim 1:
Hi(eafi> _
disc(Te/I;e x Sy — C)
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Proof of Claim 1. We first make another claim:
Claim 2: The map T — Te given by ¢ — te induces an isomorphism T/I; — Te/I e.
Proof of Claim 2. 1t is clear that the map T — Te/I e given by t > te is surjective. All

we have to show is that the kernel of this map is I;. It is clear that the kernel contains /.
Conversely, if ¢ is in the kernel, then te € I;e; let 4 € Iy be such that te = ise. Then

(t —i)e =0, and thus f(t—i =0, ie., [, wy_is = 0. If the eigenvalue of f under (t — 1)
is A, then this means AL(f, ) =0, i.e., A\ = 0. Thus (¢t — i) € Iy, i.e., t € Iy. This proves
Claim 2. O

In what follows, i, j, k, and £ are indices running from 1 to d. Let {gi} be a Z-basis of Sy
and let {¢;} be the dual basis of T/I; under the perfect pairing 7 in Lemma 4.1.5 above.
Then by Claim 2, {¢;e} is a basis for Te/Ire. Now gy = ), ay;f; for some {ay; € C}. Let
A be the matrix having (k,i)-th entry ag;, and let (a !); denote the (i,£)-th element of
the inverse of A. Then

disc(Te/Ire x Sy — C) = det{(tje, gx)} = det{{e, gk [t;)} = det{(e, (32, arifi) [1;)}
= det{(e, >, ariar(fi|t; )fz)} (since f;’s are eigenvectors)
= det{(e, >_; ari >_p(a” Vicar(ge|t;) fi)}  (using fi = 32,(a™")iege)
= det{(e, ) ari(a™)ijfi)}  (using a1(gelt;) = d¢y)
= det{}"; ai(a ")ijle, fi)} = det{3"; apile, fi)(a™1)ij}
= det(A AA 1 (where A = diag({e, fi)))
= det(A) = ][{e, fi)-

This proves Claim 1. O

With that, we are done proving Proposition 4.1.6. U

4.2 The winding quotient of level a product of two distinct
primes

Let p and ¢ be two distinct primes and let J, be the winding quotient at level pq. We
give a formula that expresses the ratio of Ly (1) to the real volume as a rational number
and interpret this formula in terms of the Birch and Swinnerton-Dyer conjecture. The proof
of this formula uses a generalization of the techniques of Section 3.2. This section depends
on Chapter 1 and Section 3.1.

A. Brumer reminded us that if our main interest is to prove the Birch and Swinnerton-
Dyer formula for any quotient of Jy(NN), then it suffices to prove it for all new quotients (at
all levels that divide N). This is because any such a quotient is isogenous to a product of
new quotients (at various levels dividing N), and if the BSD formula is true for an abelian
variety, then it is true for an isogenous abelian variety (see [Mil86b, Thm. 7.3]). However,
since the BSD formula is not known to be true even for new quotients, the results of this
section are still of interest. Also, these results led to the investigation of the generalized
Manin constant in Chapter 2.
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4.2.1 Notations and results

Let p and g be two distinct primes and recall, from Section 3.1, the definitions of the
winding element e, the winding ideal I, and the winding quotient J.(N) at level N = pq.
For simplicity of notation, we denote J(pq) by just J, in this section. Also, if f is a modular
form, and m is an integer, let a,,(f) denote the mth Fourier coefficient of f. Recall the
definitions from Chapter 1, especially the definitions of the special L-value Ly, (1), the
Manin constant c;,, the real volume Q,_, and cxo(Je). Let H = Hy(Xo(pq),Z), H, = H[I,],
I, = Anngl,, H, = H[I,], $ = Annp((0) — (c0)). If M is a positive integer, then let Sy
denote the set of newforms f of level M such that L(f,1) # 0. Then we have:

Theorem 4.2.1. With notation as abowve,

At | |HS
LJe(]‘) _ 1 . Iq\e++Hé|— Qe . q#sp . p#Sq
QJe B Ht I’f\e+ _ . . | e cy, :
‘(Hc)(H/z?e) [lfes, (1 +a—aq(f)) - Iges, (1 + P~ ap(9)) - |5 /

. HYH."
Compare this to Theorem 3.2.2. Note that ‘7&
(1+c)(H/He)

the formula above in the next section, but first let us compare it to the Birch and Swinnerton-
Dyer formula (Conjecture 1.2.1). We will prove in Section 4.2.2 that Ly, (1) # 0, and so
by [KL89] (which uses [GZ86], and was completed independently in [BFH90] and [MM91}),
Je(Q) and the Shafarevich-Tate group III; are finite. The BSD formula then says that

is a power of 2. We will prove

Ly, (1) 2 [LLL| - () - cg()
QJG |Je(Q)‘ ’ |Je(Q)|

where ¢, (J.) and ¢4(Je) are the orders of the arithmetic component group of J. at p and ¢

respectively, and J, is the dual abelian variety of J.. Compare formula (4.3) to Theo-
rem 4.2.1.

7 (4.3)

Example 4.2.2. Consider the case when p = 3 and ¢ = 11. It turns out that J;(33) has
analytic rank zero, so I, = 0 and J. = Jy(33). There are no newforms of level 3, and there
is one newform of level 11, call it g. From [Cre97, Table 3|, we find that az(g) = —1. So
14+p—ap(9) =1+3—(—1) =5. Thus, for level 33, Theorem 4.2.1 says that

3

Cro(33)

Lyyes(1)

Do 5+ o (Jo(33)) - ‘g—

(4.4)

Also using [Lig75, Lem. 3.2.15] we find that the order of (0) — (00) is 10, so the only primes
that can divide |Te/Se| are 2 and 5. Moreover, by an independent calculation (using the
fact that Jy(33) is isogenous to a product of elliptic curves), W. Stein found that

L) 1 3
Qg3) 2253 cppem)

(4.5)

which is in accord with the BSD formula (4.4).
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Compare formulas (4.4) and (4.5) to what the BSD formula (4.3) predicts. Calculations
of W. Stein showed that c3 = 2, ¢;; = 10 and 2-5 | [Jo(33)(Q)| | 2252 Now |1,
is a square; so the only way the number 3 can appear in formulas (4.4) and (4.5) is if 3
divides c;,(s5)- This observation actually led to an investigation of the generalized Manin
constant for which results are reported in Chapter 2. In fact, as mentioned in Section 2.2.3,
we find that c; s = 3.

In view of this example, and looking back at Theorem 4.2.1, we pose the following
question:

Question 4.2.3. Is ¢, ) = g7 - p#5a ?

4.2.2 Proof of Theorem 4.2.1

The proof is a generalization of the proof of Theorem 3.2.2. Let S, = S2(T'o(pq), Z)[I,]-
Just as in that proof, we get

L, (1) _ Ly, (1)
Q. ceol(Je) - ¢y, - disc(H{(J,, Z)t x S, — C)
(H/He)* H Ht
Ly, (1) ‘H+/ife+ ARy ‘@ 1 4.6
disc(Te x Se = C)  coo(Je) Te e (4.6)

Qe
where again the pairings above are obtained in a natural way from the pairing
() : (Hi(Xo(pg), 2)" ® C) x S2(T'o(pq); C) = C

given by (vs#)(w, f) = f7 2mif(z)dz; also note that to get the statement of Lemma 3.2.3
in this situation, we use [Par99, Lem. 3.10].
We focus on the factor % appearing above. If M is a positive integer, then

let T; denote the set of Galois orbits of newforms f of level M such that L(f,1) #0. If f
is a newform of level M, let A; denote the quotient of Jy(M) associated to f by Shimura
(as in Section 4.1.1).

We have the isogeny (see [Par99, §3.8])

o T4 1142+ T e
feTy g€T, h€Tpq

Hence

Ly(1) = JI La,?- I La,?- I Lan()

feTy g€eT, h€Tpq
= JlEen* I[(e? ]I (en), (4.7)
fESP 9€Sy h€ESpq

where the second equality follows from by [Shi94, Thm. 7.14] (completed by [Car86]). Note
that in the formula above we should really be taking (e, f) “at level p”, but it is the same as
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taking it “at level pg” by the functoriality of the (de Rham) pairing (ditto for the (e, g)’s).
Hence Ly (1) # 0.

Just as in Section 3.2, there is a perfect pairing T /I, x S. — Z which associates to (7', f)
the first Fourier coefficient a1 (f|7T) of the modular form f|7. This defines ¢, € T/I, ® C
characterized by (e, f) = a1(f | te) Vf € Se. By the perfectness of this pairing and the
canonical isomorphism Te = T/I., the discriminant of the pairing Te x S, — C that
associates to (te, f) the complex number (te, f) coincides with the discriminant of the pairing
T/I, x Hom(T/I.,Z) — C that associates to (t,1) the complex number v (t.t) (obtained

by extending 1) by C-linearity). The latter discriminant is equal to det t. = det t..
T/I,®C S.®C

So we need to find the action of t. on S, ® C. Note that a basis for S, ® C is given by

{h:h € Spt U{f(2),flgz) : f € Sp}U{g(2),9(pz) : g € S4}. If f is a newform of
some level M dividing pg, let V; denote the space spanned by f(z) and f((pg/M)z). Then

Se®C = @{h;hequ}vh D{f:reS,} Vi D{g:geS,} Vy. So we have
disc(Te x Se — C) H det te H det te H det te. (4.8)

h€Spq feSy 9€S,

From (4.7) and (4.8), we get

L 2 2
Je( H <€ g) H <e7 f) . (49)
disc(Te x S, — C) det t det te det t
Spg Vj gESy fese vy

If f'is a normalized eigenform for all the Hecke operators (including U, and Uy), then
it is easy to see that t.f' = (e, f')f' (look at the a1’s of both sides).
If h € Spq, then h is an eigenform for all the Hecke operators. So d‘gt te = (e, h). Thus
h

if h € Spq, then

(e, h)
d‘%:n te

—1. (4.10)

But if g € S;, then g(z) and g(pz) are eigenvectors for all the Hecke operators T}
for £ # p,q and for U,, but not for U,. However U, preserves the subspace V;. Define
(Bpg)(z) = g(pz). Then on Fourier expansions (see [AL70, §3]),

Bp(Y_ang") = Y ang™

n>1 n>1
Up(z anqn) = Z a'npqna
n>1 n>1
and TK(Z ang") = Z anpq” + Z ang"?
n>1 n>1 n>1

Since g is an eigenform for T, with eigenvalue a, = ay,(g), from the above formulas, it is
easy to see that Up(g) = apg —p- Bpg and U,(Bpg) = g. Thus the characteristic polynomial
of Up on Vy is Ug —apU, +p. By [CE98], the roots of this polynomial are distinct and so the
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action of U, is diagonalizable. If oy and ay are the eigenvalues, then an easy check shows
that g — a9 - Bpg and g — a1 - Bpg are eigenvectors with eigenvalues a; and oy respectively.
Thus we can use this eigenbasis to compute dett, on V,. Since (e, Bpg) = (e, g)/p, we get
det te = (e, — a1Byg){e, g — a2Bpg) = (e,9)*(1 — a1 /p)(1 — az/p)

g

= (€,9)*(1 — (a1 + o) /p + a10/p?) = (e,9)*(1 — ap/p + p/p?)
={e,g9)?(1+p— ap)/p.

So if g € Sy, then

(e, 9)° P
= . 4.11
d‘e/t te  14+p—ay(g) (4-11)

g

Similarly, we can show that if f € S, then

(e, 9)° q
= . 4.12
det te  1+q—aq4(f) (412)
Vs
Putting (4.10), (4.11), and (4.12) in (4.9), we get
Ly, (1) 1 (4.13)

disc(Te x 8, = C)  [Ijes, (1 +q— ag(f) Tlyes, X +7 — ap(9))

Finally, from Lemma 3.2.10, we get

(H/H,)*
(1+c)(H/H,)

A ‘

Putting this and (4.13) in (4.6), we get Theorem 4.2.1.

4.3 Some other extensions

e In Sections 3.2 and 4.1.3 we proved formulas for L4(1)/Q24 for quotients A of the new
quotient of Jo(NN). In Section 4.2.2, we worked out the formula for the ratio of the special
L-value to the real volume for the winding quotient of level a product of two distinct primes
(which is not a quotient of the new quotient of Jy(N) in general). An inspection of the
proofs shows that our methods will work whenever one can simultaneously diagonalize the
action of the Hecke operators. By [CE98], one can do this diagonalization for any quotient
of Jo(N) when N is cube-free.

o W. Stein suggested that one can generalize the formula in Theorem 4.1.1 to higher weight
modular forms, in which case the abelian varieties get replaced by motives. Thus it may
have applications to the conjectures of Deligne, Beilinson, Bloch and Kato (e.g., see [BK90]),
which are analogs of the BSD conjecture for motives.

e So far, we considered only those quotients of Jy(IN) whose special L-value was non-
zero. There is also a BSD formula for quotients that have L-value equal to zero (given in
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Conjecture 1.1.2). Our Theorem 4.1.1, together with the ideas in [MT87], suggests a way
to find formulas for the left-hand side of the BSD formula in this case.

e Each term in the BSD formula for quotients of Jo(N) is a Hecke module; so there might
be a finer version of the formula that gives an equality of Fitting ideals (for example, this
has been done for elliptic curves with complex multiplication in [Gro82]).
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Chapter 5

Detecting invisible elements of the
Shafarevich-Tate group

Mazur [Maz98] introduced the concept of visibility of elements of the Shafarevich-Tate
group of optimal modular elliptic curves. We generalize the notion to arbitrary abelian
varieties and find, based on calculations that assume the Birch and Swinnerton-Dyer con-
jecture, that there are elements of the Shafarevich-Tate group of certain abelian subvarieties
of Jo(p) and J1(p) that are not visible in Jy(p) and J;(p) respectively. This chapter is basi-
cally a generalization of the results given in [Maz98] for quotients of Jy(IN) that are elliptic
curves to quotients of arbitrary dimension. This chapter is fairly independent of the rest
of the thesis, except that we refer to the short Section 3.1 for some definitions, and that
Proposition 5.3.3 depends on some earlier sections.

5.1 Definitions and the result

Let J be an abelian variety and B be an abelian subvariety of J, both defined over Q.
The Galois cohomology group H'(Q, B) is isomorphic to the group of principal homoge-
neous spaces, or torsors, of B [Lan91, II11.4.2]. A B-torsor V is said to be wisible in J if it
is isomorphic over Q to a subvariety of J. The Tate-Shafarevich group of B, denoted Il 5,
consists of equivalence classes of principal homogeneous spaces of B that are locally trivial
everywhere; it is conjectured to be finite. An element of the Shafarevich-Tate of B is said
to be wisible in J if the corresponding torsor is visible in J. If an element is not visible
in J, we say that it is invisible (it will be clear from the context what the ambient abelian
variety J is).

The notion of visibility arose when Mazur was looking for natural spaces where can one
embed the principal homogeneous spaces of an elliptic curve (see [Maz98] for details). Adam
Logan, based on Cremona’s tables, studied instances of non-trivial Shafarevich-Tate groups
for elliptic curves F that were quotients of Jy(N) for N square-free and less than 3000. The
order of the elements of the Shafarevich-Tate group of F that are visible in Jy(N) divides
the modular degree of E, and thus by comparing the order of the Shafarevich-Tate group
(as predicted by the Birch and Swinnerton-Dyer conjecture) with the modular degrees, they
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tried to detect elements that are not visible in Jy(N). The only instance of an invisible
element they could convincingly detect was for the level N = 2849, which was not visible
in Jy(N); but they could not test whether this element becomes visible in J;(N) or not.

As before, if A is an abelian variety, then let A denote the dual abelian variety of A.
Recall the definitions of Section 3.1. Let p be a prime and J. = J(p) throughout this
chapter. The dual map fe — m = Jo(p) is an injection (e.g., by [Maz98, Prop. 9]).
Thus we can view :]\e as a subvariety of Jy(p) and talk about the visibility of its torsors
in Jo(p). We have a map Jy(p) LNy (p) obtained via Picard functoriality from the map
7 : X1(p) = Xo(p). Its kernel is finite. Let j;, denote the image of J, in J; (p) under 7*.

Based on calculations concerning the order of III; as predicted by the Birch and
Swinnerton-Dyer conjecture, we find (Theorems 5.3.4 and 5.3.5) that, for p = 1091, there
is an element of ]_HA that is not visible in Jy(p) and whose image in H_[A, is not visible
in Ji(p). This result was mentioned in [Aga99]. After [Maz98] and [Aga99] appeared other
instances of invisibility have been found; e.g., see [CM99] and [AS99b]. The existence of
visible elements is closely related to congruences between modular forms of analytic rank
zero and modular forms of analytic rank greater than zero (see [AS99b] for details).

5.2 The strategy to detect invisible elements

As in the introduction, let J be an abelian variety and B be an abelian subvariety
of J, both defined over Q. The definition of visibility that we gave is one possible extension
of the definition given by Mazur. Here is another definition: we say that a B-torsor V is
visible as a torsor in J, if there is a subvariety V' of J such that the group law of J gives
an action of B on V' (both B and V' are contained in J), and there is an isomorphism of

B-torsors 1 : V — V' (i.e., an isomorphism of varieties over Q that respects the B-action).

In [CM99] and [AS99b], the definition used is yet another one: visible elements are
defined as the the elements in the kernel of the map Il — IIl;. We show that this
definition is the same as the notion of visibility as a torsor.

Proposition 5.2.1. Let J be an abelian variety and B be an abelian subvariety of J, both
defined over Q. Let V' be a B-torsor. Then V is visible as a torsor in J if and only if the
cocycle class corresponding to V is in the kernel of the map H'(Q, B) — HY(Q, J).

Proof. It is convenient to use the notion of sheaf torsors (see [Mil80, § III.4]). If B is an
abelian variety over Q, let ST'(B) denote the equivalence classes of sheaf torsors of B. If V' is
a sheaf-torsor, pick P € V(Q); then we get a cocycle given by o — o(P) — P € B(Q), where
o € Gal(Q/Q). One can show that this gives an element of H'(Q, B) that is independent
of the choice of the point P above. Thus we get a canonical map ST(B) — H'(Q, B). By
Theorems 1.7, 3.9, 2.10, and 4.6 in Chapter III of [Mil80], this map is an isomorphism.

If V is a B-sheaf torsor, we define the pushout V x? J as the sheaf whose section
over a Q-algebra R of finite type is the set of orbits of V(R) x J(R) under the action
of B(R), where B(R) acts on V(R) in the usual way, but on J(R) the action is by the
inverse of the group law on J(R). Also V(R) x J(R) has an action of J(R) on the second
component, which is compatible with the B(R) action, and thus we have an action of J(R)
on (V xB J)(R). Hence V x® J is a J-torsor.
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The map H'(Q,B) — H(Q,J) induces a map ST(B) — ST(J). We first claim
that the image of (the sheaf torsor corresponding to) V under this induced map is the
pushout V x 2 J.

Proof of the claim. Pick P € V(Q). Let o € Gal(Q/Q). Just for this proof, we write
the torsor action as composition. The cocycle in H'(Q, B) corresponding to V maps o
to ay, where a, is the unique element of B(Q) such that o(P) = a,(P). Now consider
the point (P,0) in V(Q) x J(Q) and let Q be its image in (V xZ J)(Q). Then an easy
check shows that o(Q) = a,(Q) where, now, a, is considered an element of J(Q). So the
cocycle in H'(Q, J) corresponding to V xZ J maps o to a, € J(Q). But this is exactly
the image of V under the map H'(Q, B) — H'(Q, J). Since o was an arbitrary element of

Gal(Q/Q), that proves the claim. O

Now we are ready to prove the Proposition. Suppose V is visible as a torsor in J. Let
t:V — J be as in the definition of visibility as a torsor in J. Then consider the map of
sheaf torsors j : V — V xB J induced by the map on sections V(R) — V(R) x J(R) given
by v — (v,—t(v)). If v1,v2 € V(R), then they are translates by an element of B(R); but
then —¢(v1) and —i(v2) are also translates by the same element of B(R). Hence the images
of v; and vy under j are the same; i.e., the image of the map V(R) — (V xB J)(R) is a
point. This point is also Galois invariant (since the map j is defined over Q). Hence this
gives us a point of V x 2 J over Q. But that makes V x? J the trivial torsor. Hence by the
claim above, the cocycle class corresponding to V in H'(Q, B) maps to the trivial element
of HY(Q, J).

Conversely, suppose the cocycle class corresponding to V is in the kernel of the map
HY(Q,B) — H'(Q,J). By the claim above, this means that there is an isomorphism

$:VxBJ =5 J over Q. Now let R be any Q-algebra of finite type and consider the map
¥ : V(R) = (V xB J)(R) induced by the map V(R) — V(R) x J(R) given by v ~ (v,0).
An easy check shows that the composite V(R) LA (V xB J)(R) % (R) is an injection and
that the action of B(R) is preserved. By Yoneda’s lemma, we have a monomorphism, i.e.,
a closed immersion V' — J, and the action of B is preserved. This shows that V is visible
as a torsor in J. |

If an element is visible as a torsor then it is clear that it is also visible (in the sense
we defined it). We do not know if the converse is true. However we have a result which
says that the converse is true up to an automorphism of B; we state it next. From now on,
whenever we use the term “visible”, we mean the definition we gave in Section 5.1.

Recall that J is an abelian variety and B is an abelian subvariety of J, both defined
over Q. Consider the following condition on the pair (J, B):

(%) if J ~ B x C is an isogeny over Q, where C is another abelian variety, then
no simple factor (over Q) of B is isogenous (over Q) to a simple factor (over Q) of C.

The following lemma was stated without proof in [Aga99].

Lemma 5.2.2. Let B be an abelian subvariety of J such that the pair (J, B) satisfies ().
Let V be a B-torsor that is visible in J; so V can be considered as an element of H'(Q, B).
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Consider the natural map i : HY(Q, B) — HY(Q,J) obtained from the embedding i of B
in J. Then there exists an automorphism ¢ of B (defined over Q) such that V maps to 0

under the composite H*(Q, B) N HY(Q,B) LN HY(Q,J), where ¢ is the automorphism
of H'(Q, B) induced by ¢.

Proof. Suppose V is a B-torsor visible in J and let V' be the subvariety of J isomorphic to V'
over Q (given by the definition of visibility). Since V is a B-torsor, we have B 2V = V'

over Q. Consider the composite map B SV /B defined over Q. Up to translation,
it is a homomorphism of abelian varieties. Its image has to be a point because otherwise ()
would be violated. Hence the image of V' — J/B is also a point. Thus V' is a translate
of B (over Q) and hence has an action of B by translation. In the following, let o denote an
arbitrary element of Gal(Q/Q). As a cocycle in H*(Q, B), V' is given by ¢ — o(Q) — Q,
where @ is any fixed element of V/(Q), and the subtraction is the usual subtraction in .J.
But then V' maps to 0 in H*(Q,J) under 7 since Q € V'(Q) C J(Q). Next, let P
be an element of V(Q). Then the element of H'(Q, B) corresponding to V is the class
of the cocycle o — o(P) —y P, where we use subscripts under the group action symbol
to distinguish actions of B on different torsors. Let ¢ : V' — V' be the isomorphism
between V and V' (over Q). Then the element of H'(Q, B) corresponding to V' is given
by e o (.(P)) —y+ t(P). Consider the map ¢ : B — B given by a — (P +y a) —y 1(P).

The map ¢ is defined over Q and is a homomorphism of abelian varieties since it takes the

identity element of B to itself. It takes the torsor V to V' and thus i(¢(V)) =2(V') = 0. It

is an automorphism since it has an inverse given by a + =1 (¢(P) 4y a) —y P. O

In [CM99], semi-stable elliptic curves were considered, and hence the only possible au-
tomorphisms of B were multiplication by £1 and so all the definitions of visibility coincided
(see [CM99, Remark 2]).

Let J be an abelian variety that is self-dual, i.e., an abelian variety J together with an
isomorphism T = J, using which we implicitly 1dent1fy J with J. Let A be an optimal
quotient of J such that the dual map A — J is injective. If (J, A) satisfy (x), then the
composite A J— Ais an isogeny; call it f. Define n, as the exponent of kerf (this
definition is consistent with Definition 2.2.5). In this situation, the following proposition
gives a way of detecting invisible elements of III 5.

Proposition 5.2.3. Let J be an_abelian variety that is self-dual and let A be an optimal
quotient such that the dual map A — J is injective, and such that and (J, A) satisfy (x).
Then all elements of 111 7 that are visible in J are killed by multiplication by n 4.

Proof. Recall that f was the composite map A J— A, which is an isogeny. There is an
isogeny g : A — A such that g o f = multiplication by n, (e.g., see [Mil86a, §8]; we called g
an isogeny conjugate to f in Definition 2.3.3). So we have maps

A—J—AS 4

such that the composite is multiplication by n,. Suppose V is an element of 111 4 that is
visible in J. Apply Lemma 5.2.2 with B = A and let ¢ be the automorphism of A as given
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by the lemma. Consider the maps
“ “ 1 o~
ASA—I—A—Ai%A
The composite is again multiplication by n 4. This induces maps

I ; -2 T ; — T, — 10T, — 101 ; 25 100 5,

where the composite is again multiplication by n,. Consider V' as an element of the first
group III 7 in this sequence. Then by Lemma 5.2.2, its image in Il is trivial; hence it is
killed under the composite; i.e., it is killed by multiplication by n4. O

Thus every element of III ; that has order prime to n, is not visible in J. We will use
this technique in the next section.

5.3 Discovery of invisible elements

We continue to use the notation of Sections 5.1 and 5.2. Let Jy(p)' denote the image
of Jo(p) in J1(p)-

Lemma 5.3.1. Let J denote Jy(p) or Ji(p), and B denote an abelian subvariety of Jo(p)
or Jo(p)' respectively. Then the pair (J, B) satisfies (x).

Proof. First the case of J = Jy(p): this follows because in a decomposition of Jy(p) up to
isogeny, no two simple factors can be isogenous over Q by the multiplicity one theorem and
not even over Q because p is squarefree (using [Rib75, Prop. 3.1]). Next the case J = J;(p):
No simple factor of B can be isogenous to another simple factor of Jy(p)' (by the same
argument above). Suppose B’ is a simple factor of B that is isogenous to a simple factor
of Ji(p)/Jo(p)'. Now Ji(p)/Jo(p) has everywhere good reduction over some extension
of Q (this follows from [DR73, §5, Ex. 3.7(:)]), hence so does B'. But Jy(p) has purely
multiplicative reduction at p by [DR73, §5, Thm. 6.9], so it cannot have a factor with
good reduction even after a base extension. This contradiction finishes the proof of the
lemma. ]

In what follows, p = 1091 and for ease of notation, we frequently denote Jy(p) simply
by Jo.

Proposition 5.3.2. For p = 1091, the elements of Il that are visible in Jo(p) are killed
by multiplication by 2.

Proof. For p = 1091, we have J. = J, , where J; = Jo/(1 + W,)Jp and W, is the Atkin-
Lehner involution (this was checked by a calculation and also follows from [Bru95, §8]). By
combining the quotient map Jy — J, and its dual map, and identifying jz) with Jy using the
usual canonical isomorphism (e.g., see [Mil86b, Thm 6.6]), we get the maps T, = Jo — Ju;
call the composite f. By [Maz98, Prop. 8], f is an isogeny; let K denote its kernel. The
group K is the intersection of fe and (1 + W,)Jy. On the former group, W), acts as —1,
and on the latter group, W, acts as +1. We conclude that K is killed by multiplication
by 2. The proposition now follows from Lemma 5.3.1 (with J = Jy and B = :fe) and
Proposition 5.2.3. ]
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Proposition 5.3.3. Assume the Birch and Swinnerton-Dyer formula (Conjecture 3.2.1)
for the prime p = 1091. Then for p = 1091, there is an element of order 7 in IHJA.

Proof. We will use notation from Sections 1.2 and 3.2. Combining the BSD formula (Con-
jecture 3.2.1) with Theorem 3.2.2, we get

~ HTt
|H-[Je| : Cp(Je) *Cje T = |Je(Q)tor‘ ' |Je(Q)t0r| =
H. +HS

HS

Se

(5.1)

By a calculation (see Table 3.1) we find that, for p = 1091, 7 divides the factor |H /Se|
in the equation given above. Thus 7 divides the right-hand side of equation (5.1). We will
check that it does not divide any factor of the left-hand side other than |III,|.

First consider ¢,(J). We apply [BLR90, Prop. 7.5.3] to the exact sequence

0— (1+Wp)J0 — Jo — Jo/(1+Wp)J0 —0

to conclude that a power of 2 kills the cokernel of the map of Néron models Jg — Je.
Hence we have that away from 2, ¢,(J,) divides the number of connected components
in the special fiber at p of Jo, which is n by [Maz77, Thm. A.1]. But in our case,
n =num((1091 — 1)/12) = 545, so 7 does not divide c,(J.). Next, by Theorem 2.2.3, the
only prime that can divide c;,_ is 2, so certainly 7 does not divide c¢;, . Finally 7 does not
divide n = 545.

So looking at equation (5.1), one concludes that 7 divides |III 7, |. Next, by the Cassels-
Tate pairing, 1T+ is finite, and |IIl5-| = |II1,,|. Hence 7 divides |III5-|. Thus III+ has a
non-trivial element of order 7. O

Theorem 5.3.4. Assume the Birch and Swinnerton-Dyer formula (Conjecture 1.2.1) for
the prime p = 1091. Then for p = 1091, H_Ij; has an element that is not visible in Jy(p).

Proof. The element of order 7 of II7- from Proposition 5.3.3 is not visible in Jo(p) by
Proposition 5.3.2. O

Theorem 5.3.5. For p = 1091, the image of the element of order 7 of H_[j; (from Propo-
sition 5.8.3) in - is not visible in Jy(p).

Proof. Let J; = Ji(p). Consider the series of maps

Jo == Ji — Ji = J,

where the map 7, is obtained from 7 : X;(p) — Xo(p) via the Albanese functoriality. The
composite is just multiplication by deg(m)= (p —1)/2 = 545. Let ¢ denote the quotient
map Jy — J. and let 9 denote its dual. Then the composite

~

Ry NNy N AN AL N

is an isogeny and the only primes that can divide the order of this isogeny are the prime 2
and the primes that divide 545, i.e., 5 and 109. Hence the element of order 7 in Hlj; does
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not get killed in I, and so there is a nontrivial element of order 7 in H_IA, Callit V
and suppose it is visible in J;. Then by Lemma 5.2.2 and Lemma, 5.3. 1(w1th J = Ji and
B = Je,), there is an automorphism ¢ of Je such that V is killed under the composite

H_[? A M~ — 110 J,- Now in the composite

Ny S RNy A (5.2)
which is an isogeny, the first map f j is also an isogeny. So the rest of (5.2), i.e., the
composite
RS LN LNy A
is also an isogeny and the only primes that can divide its degree are 2, 5 and 109. Attaching
the automorphism ¢, we find that the composite

Ay AR N LN
is also an isogeny; call it f. The only primes that can divide the degree of f are 2, 5
~1
and 109. There is an isogeny g : Jo. — J, such that g o f is multiplication by the degree
of the isogeny f (e.g., see [Mil86a, §8]). Since V is killed under the sequence of maps

IHA LA HIA/ — Iy, it is killed under the map induced by g o f, i.e., it is killed by
multlphca,tlon by an integer that is not divisible by 7. But V has order 7 in [T+ 7 this
contradiction shows that V is an element of H_IA that is not visible in Jj. O

A similar result of the existence of an invisible element was found for p = 1429, where
5 divides |H /Se| (see Table 3.1). Note that as a byproduct, we have that the Shafarevich-
Tate groups of Jp(1091) and J;(1091) are non-trivial (assuming the Birch and Swinnerton-
Dyer conjecture).

Question 5.3.6. Mazur [Maz99] showed that if £ is an elliptic curve over Q, then every
element of II15 of order 3 is visible in an abelian surface contained in the Jacobian of the
modular curve of some (unknown) level. So the natural question is whether the element
of III 7, (1091) that is not visible in Jy(1091) is visible in Jo(M) for some integer M that is a
multiple of 1091. W. Stein found that J.(1091) shared a congruence mod 7 with an elliptic
curve of level 2-1091 and rank 1, and using this one hopes to show that the element under
consideration becomes visible in Jy(2-1091) (by generalizing work of Mazur: see [Maz98]
and [AS99Db)).
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