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Abstract

Let A be an elliptic curve over Q of square free conductor N that
has a rational torsion point of prime order r such that r does not
divide 6N . We show that then r divides the order of the cuspidal
subgroup of J0(N). If A is optimal, then viewing A as an abelian
subvariety of J0(N), our proof shows more precisely that r divides the
order of A ∩ C. Also, under the hypotheses above except the hypoth-
esis that r does not divide N , we show that for some prime p that
divides N , the eigenvalue of the Atkin-Lehner involution Wp acting on
the newform associated to A is −1.

1 Introduction

Let A′ be an elliptic curve over Q of square free conductor N and let A be
the optimal curve in the isogeny class (over Q) of A′. Let X0(N) denote
the modular curve over Q associated to Γ0(N), and let J0(N) be its Ja-
cobian. By [BCDT01], we may view A as an abelian variety quotient over
Q of J0(N). By dualizing, A can also be viewed as an abelian subvariety
of J0(N), as we shall do in the rest of this article. The cuspidal subgroup C
of J0(N)(C) is the group of degree zero divisors on X0(N)(C) that are sup-
ported on the cusps. It is known that C is finite. Since N is square free, the
cusps of X0(N) are defined over Q, so C ⊆ J0(N)(Q)tor.

When N is prime, Mazur [Maz77] showed that C = J0(N)(Q)tor; so
in particular, A(Q)tor ⊆ C. The torsion and cuspidal groups are of inde-
pendent interest and importance, and relations between them are of great
significance. For example, using such a relation, Emerton [Eme03] showed
that when N is prime, the orders of A(Q)tor and the arithmetic component
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group of A are the same, which implies a significant cancellation in the for-
mula given by the second part of the Birch and Swinnerton-Dyer conjecture
for A (when N is prime), which is in accord with the conjecture (see, e.g.
[AS05, §4.3]).

Based on some numerical data of Cremona [Cre97] and Stein [Ste], we
suspect that A(Q)tor ⊆ C more generally when N is square free, i.e., that
again the cuspidal divisors “explain” the existence of all the rational torsion
points in A. In this paper, we prove the following result in this direction:

Theorem 1.1. Recall that A′ is an elliptic curve over Q of square free
conductor N and A is the optimal curve in the isogeny class of A′. Suppose
r is a prime that does not divide 6N .
(i) If r divides the order of A(Q)tor, then r divides the order of A ∩ C (in
particular, r divides the order of the cuspidal subgroup C).
(ii) If r divides the order of A′(Q)tor, then r divides the order of the cuspidal
subgroup C.

The proof of the theorem is given in Section 4. The main ingredient in
the proof of part (i) is to show that the hypotheses imply that the cuspform f
associated to A is congruent to an Eisenstein series E modulo r (the tricky
part is to get the congruence for Fourier coefficients of indices that are not
coprime to N). As part of the proof of this congruence, we show that under
the hypotheses of part (i) of the theorem (but relaxing the hypothesis that
r -N), for at least one prime p that divides N , the sign of the Atkin-Lenher
involution at p acting on f is −1, which is an interesting result on its own
(see Proposition 3.6). Given the congruence between f and E, and the fact
that f is ordinary at r (which we show), a result of Tang [Tan97, Thm 0.4]
tells us that A[r] has nontrivial intersection with a subgroup of the cuspidal
group C, thus giving us part (i) of the theorem above. Part (ii) follows from
part (i) by [Dum05, Thm. 1.2] which says that if ` is a prime such that
`2 -N (which holds for ` = r, given our hypothesis), then if A′ has a rational
torsion point of order `, then so does A (see also Remark 4.1).

By[Maz77, III.5.1], the only primes that can divide the order of A′(Q)tor
are 2, 3, 5 and 7, and moreover there is a finite list of possibilities forA′(Q)tor.
In particular, our theorem gives new information only when r is 5 or 7 (and
r -N). We expect that by doing more work (using ideas from [Maz77]), one
should be able to prove that for every prime r - 6N , the r-primary part of
A(Q)tor is contained in C; again, by Mazur’s result mentioned above, this
gives no new information (since we are assuming that r 6= 2, 3). However,
the hope is that such a result may hold (and the proof may generalize) for
higher-dimensional abelian subvarieties A of J0(N) associated to newforms.
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Finally, it would also be desirable to see if the hypothesis that r - 6N can
be removed. All this will be the subject of a future paper. The present ar-
ticle may be viewed as our first step in relating rational torsion of modular
abelian varieties to the cuspidal subgroup when N is square free, as well as
generalizing some of the techniques of Mazur [Maz77] for prime N to square
free N .

In any case, the theorem above puts restrictions on when 5 and 7 can
divide the order of A′(Q)tor, and may be useful in its computations, since
the order of the cuspidal subgroup C can be computed (see, e.g., [Ste]).
It may also be useful theoretically in certain situations where there is an
explicit formula for the order of C. For example, if N is a product of two
primes p and q, then by [CL97, §3.4], the only odd primes that divide the
order of C are the ones that divide (p2 − 1)(q2 − 1). As a computational
application, taking p = 1013 and q = 10007, we see that 5 and 7 cannot
divide the order of the rational torsion subgroup of any elliptic curve over Q
of conductor N = 1013 · 10007.

The organization of this article is as follows. In Section 2, we show
how to construct certain desirable Eisenstein series. In Section 3, we state
some other preliminary results needed for the proof of Theorem 1.1. These
results concern certain constraints on the Fourier coefficients of f arising out
of the existence of rational r-torsion, and could be of independent interest.
Finally, we give the proof of Theorem 1.1 in Section 4. Note that in any
given section, we continue to use the notation introduced in earlier sections.

Acknowledgement: We are grateful to Barry Mazur for pointing out a con-
struction that we used in the proof of Proposition 2.1, and to Neil Dummi-
gan for conveying the proof of Lemma 3.2, as well as for some very useful
comments on an earlier draft.

2 Certain Eisenstein series

If g = g(z) is a modular form, then we will denote its Fourier expansion∑
n≥0 an(g)qn at the cusp ∞ (where q = e2πiz as usual) by g(q). If n is a

positive integer, then σ(n) denotes the sum of all the positive divisors of n.

Proposition 2.1. Recall that N is square free. For every prime p that
divides N , suppose we are given an integer δp ∈ {1, p} such that δp = 1 for at
least one p. Then there is an Eisenstein series E of weight 2 on Γ0(N) which
is an eigenfunction for all the Hecke operators such that for all primes ` -N ,
we have a`(E) = `+ 1, and for all primes p |N , we have ap(E) = δp.
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Note: The question arose: how do we know E is not a cusp form?
Hwajong Yoo provided the answer: the eigenvalue of Tr for prime r is 1+r,
so it is greater than 2

√
r if r goes infinity. However, if it were a cusp form

which is an eigenform, absolute value of the eigenvalue of Tr is less than
2
√
r which is contradiction.

Proof. The normalized Eisenstein series e of weight 2 and level 1 has q-
expansion e(q) = 1/24 −

∑
n≥1 σ(n)qn. It is not a modular form of level 1,

but it is an eigenfunction for all the Hecke operators. We shall construct
the desired Eisenstein series by starting with e and “raising the level”.

Let g =
∑

n≥0 an(g)qn be a normalized eigenfunction of some level M
and let r be a prime that does not divide M . Let (Brg)(z) = g(rz). Then
we have (see, e.g., [AL70, p. 141])

Br(
∑
n≥0

anq
n) =

∑
n≥0

anq
nr,

Ur(
∑
n≥0

anq
n) =

∑
n≥0

anrq
n,

and T`(
∑
n≥0

anq
n) =

∑
n≥0

an`q
n +

∑
n≥0

`anq
n`, ∀ ` -Mr, (1)

where T` and Ur are the usual Hecke operators at level Mr. For the moment,
let Tr denote the r-th Hecke operator of level M ; then equation (1) holds
for Tr as well. Thus from the formulas above, we see that Tr = Ur + rBr.
Since g is an eigenfunction for Tr with eigenvalue ar(g), we deduce that
Ur(g) = ar(g) · g − r · Br(g) and Ur(Br(g)) = g. Thus Ur preserves the
complex vector space V generated by g and Br(g), and the characteristic
polynomial of Ur on this subspace is U2

r −ar(g)Ur+r. The elements of V are
eigenvectors for all the other Hecke operators. Now suppose ar(g) = 1 + r,
as will be the case in our application. Then the characteristic polynomial
becomes U2

r − (1 + r)Ur + r, whose roots are 1 and r. Thus the action of Ur
is diagonalizable on V . Moreover, one checks that a basis of normalized
eigenvectors (for all the Hecke operators) is gr = g−r ·Br(g) = g(q)−r ·g(qr)
and g̃r = g − Br(g) = g(q) − g(qr), with eigenvalues 1 and r respectively
for Ur. If g is actually a modular form, then so are gr and g̃r. Since g is
normalized, ar(gr) = 1 and ar(g̃r) = r. Moreover, since raising levels by r
does not disturb the Fourier coefficients at other primes, for all primes ` 6= r,
we have a`(gr) = a`(g̃r) = a`(g).

Now pick a prime p that divides N such that δp = 1. Taking M = 1,
r = p, and g = e in the discussion above, and considering that ap(e) =
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σ(p) = 1 + p, we get an Eisenstein series ep that is an eigenvector for all the
Hecke operators such that for all primes ` 6= p, we have a`(ep) = a`(e) =
σ(`) = `+ 1, and ap(ep) = 1. Moreover, ep is a modular form of level p (see,
e.g., [DI95, p. 47]). This proves the desired result if N = p.

If another prime s divides N , then we apply the procedure two para-
graphs above, taking M = p, r = s, and g = ep. Since as(ep) = as(e) = 1+s,
we get an eigenform for all Hecke operators such that for all primes ` -N ,
the `-th Fourier coefficient is `+ 1, the p-th Fourier coefficient is 1, and the
s-th Fourier coefficient may be chosen to be 1 or s. This proves the desired
result if N = ps.

Since N is square free, and raising levels by a prime that divides N does
not disturb the Fourier coefficients at other primes, we see that repeating the
procedure in the previous paragraph we get an eigenform E with a`(E) =
` + 1 for all primes ` -N , ap(E) = 1, and for all primes s |N with s 6= p,
as(E) can be chosen to be 1 or s.

The fact that one can construct interesting Eisenstein series by raising
levels as in the proof above was pointed out to us by B. Mazur. In fact, a
series as in the proposition above was used for the special case when N is
prime in [Maz77] (the series e′ in § II.5 on p. 78 in loc. cit.).

3 Some results on Fourier coefficients

As before, f denotes the cuspform of weight 2 on Γ0(N) associated to A.
Then f has integer Fourier coefficients. Let wp denote the sign of the Atkin-
Lehner involution Wp acting on f . In this section, we discuss how the
existence of rational r-torsion in A puts some restrictions on the Fourier
coefficients of f .

The following lemma is perhaps well known.

Lemma 3.1. Suppose a prime r divides the order of A(Q)tor. Then for all
primes ` -N , we have a`(f) ≡ 1 + ` mod r and if p |N , then ap(f) = −wp.

Proof. The proof of the first claim follows from the discussion in [Maz77,
p. 112–113]; we repeat some of the arguments in loc. cit. for the convenience
of the reader. Let P be a point of order r in A(Q)tor and let G be a finite
quotient of Gal(Q/Q) through which the action of Gal(Q/Q) on J0(N)[r]
factors. Denote by V the (T/rT)[G]-submodule of J0(N)[r] generated by P
and by m the annihilator in T of V . Let S = Spec Z, and let J denote
the Néron model of J0(N) over S. Let V/S denote the quasi-finite subgroup
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scheme of J [r] whose associated Galois module is V . Since N is square free,
J0(N) has semi-stable reduction, and the argument at the bottom of p. 113
in [Maz77] shows that V/S is either µr⊗Fr T/m or Z/rZ⊗Fr T/m. In either
case, if ` is a prime that does not divide N , then the Eichler-Shimura relation
T` = Frob` + `/Frob` on J/F`

(where `/Frob` is the Verschiebung of J/F`
)

tells us that T` ≡ (1 + `) mod m. In particular, T` − (1 + `) annihilates P .
Since T`P = a`(f)P , we see that T`−a`(f) annihilates P , and hence so does
a`(f) − (1 + `). But P has order r, so r divides a`(f) − (1 + `), and hence
a`(f) ≡ 1 + ` mod r.

If p |N , then ap(f) = −wp because Up = −Wp on the new subspace
of S2(Γ0(N),C). This finishes the proof of the lemma.

Keeping in mind the strategy of the proof of our main theorem (The-
orem 1.1) mentioned in the introduction, we see from the lemma above
and Proposition 2.1 that coming up with an Eisenstein series E such that
a`(f) ≡ a`(E) mod r for all primes ` -N is rather easy. Proving the congru-
ence for all ` |N for a suitable Eisenstein series is the tricky part, for which
we need the results below.

The following fact is stated without a detailed proof in [Dum05, §4];
the ingredients of the proof were communicated to us by N. Dummigan.

Lemma 3.2 (Dummigan). Let r be an odd prime that divides the order
of A(Q)tor. If p is a prime that divides N such that wp = 1, then r |(p+ 1).

Proof. By the hypothesis, there is a nontrivial point P in A(Q)[r]. Then
P ∈ A(Qp)[r]. Since p2 -N (as N is square free) and wp = 1, the elliptic
curve A has non-split multiplicative reduction at p. Thus there is a q ∈ Q∗p
and a Tate curve Eq over Qp, such that A is isomorphic to Eq over an
unramified quadratic extension K of Qp. Now Eq(Qp)

∼= Qp/q
Z over Qp;

let x ∈ Qp be such that its image is in Eq(Qp)[r] corresponds to P . Since

rP = 0, we have xr ∈ qZ, i.e., xr = qn for some n ∈ Z. Let ζr be a primitive
root of unity in Qp, and let q1/r denote a choice of a root of Xr = q in Qp.

Then x = ζar q
b/r, for some a, b ∈ {0, . . . , r − 1}.

Since K is unramified over Qp, its Galois group is generated by the
Frobenius endomorphism, which we will denote by σ. Now A(Qp)[r] is the

same as Eq(Qp)[r], except that the Galois action on A(Qp)[r] is twisted by a
nontrivial unramified quadratic character. Thus since P ∈ A(Qp), we have
σ(x) = 1/x modulo qZ. So the valuation of σ(x)x is an integer multiple of
that of q, and since σ preserves valuations, we have 2b/r ∈ Z. If b 6= 0, then
this is possible only if r = 2.
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Now consider the case where b = 0. Then a 6= 0, and x = ζar . If ζr 6∈ Qp,
then σ(ζar ) = ζapr and so ζapr = 1/ζar . Since ζar is also a primitive r-th root of
unity, we have r |(p+1). If ζr ∈ Qp, then since σ fixes ζr, we have ζr = 1/ζr,
i.e., r = 2. This proves the lemma.

Remark 3.3. In the lemma above, the hypothesis that r is odd is necessary.
For example, the elliptic curve 14A1 has rational 2-torsion and w2 = 1
(taking r = p = 2, we do not have r |(p+ 1)).

Corollary 3.4. Let r be an odd prime that divides the order of A(Q)tor. If
r |N , then wr = −1.

Proof. If wr = 1, then by Lemma 3.2 (taking p = r), r | (r + 1), i.e., r | 1,
which is impossible. So wr = −1.

Following [Maz77, p. 77 and p. 70], by a holomorphic modular form
in ω⊗k on Γ0(N) defined over a ring R, we mean a modular form in the
sense of [Kat73, §1.3] (see also [DR73, § VII.3]). Thus such an object is a
rule which assigns to each pair (E/T , H), where E is an elliptic curve over
an R-scheme T and H is a finite flat subgroup scheme of E/T of order N , a

section of ω⊗2E/T
, where ωE/T

is the sheaf of invariant differentials. If r is a

prime such that r -6N and f is a modular form of weight 2 on Γ0(N) with
coefficients in Z[ 1

6N ], then by [Maz77, Lemma II.4.8], there is a holomorphic
modular form in ω⊗2 on Γ0(N) defined over Z/rZ, which we will denote
f mod r, such that the q-expansion of f mod r agrees with the q-expansion
of f modulo r.

Lemma 3.5 (Mazur). Let R be a ring such that 1/N ∈ R. Let g be a
holomorphic modular form in ω⊗k on Γ0(N) defined over R. Suppose that
for some prime p that divides N , the q-expansion of g is a power series
in qp, i.e., there is h(q) ∈ R[[q]] such that g(q) = h(qp). Then h(q) is
the q-expansion of a holomorphic modular form in ω⊗k on Γ0(N/p) defined
over R.

Proof. The lemma is proved in [Maz77] under the condition that N is prime,
and p = N (Lemma II.5.9 in loc. cit.). The same proof works mutatis
mutandis to give the lemma above, with the only change to be made being
to replace certain occurrences of N by p (e.g., qN becomes qp everywhere)
and the occurrences of N − 1 at the bottom of p. 84 in [Maz77] by φ(N),
where φ is the Euler φ-function.
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Proposition 3.6. Suppose there is a prime r bigger than 3 such that r di-
vides the order of A(Q)tor. Then there is a prime p that divides N such that
wp = −1.

Proof. Suppose, contrary to the conclusion of the lemma, that for every
prime p that divides N , we have wp = 1. By Corollary 3.4, r -N .

If M is a postive integer, then let us say that a holomorphic mod-
ular form g in ω⊗2 on Γ0(M) defined over Z/rZ is special at level M if
an(g) ≡ σ( n

(n,M))
∏
p|M (−1)ordp(n) mod r for all positive integers n. Using

Lemma 3.1 and the fact that f is an eigenvector for all the Hecke operators,
we see that f mod r is special at level N .

Claim: If M is a square free integer and g is a holomorphic modular form
in ω⊗2 on Γ0(M) defined over Z/rZ that is special at level M and s is a
prime that divides M , then there exists a holomorphic modular form in ω⊗2

on Γ0(M/s) defined over Z/rZ that is special at level M/s (which is also
square free).

Proof. By Proposition 2.1, there is an Eisenstein series E which is an eigen-
vector for all the Hecke operators, with a`(E) = ` + 1 for all primes ` -M ,
ap(E) = p for all primes p that divide M except p = s, and as(E) = 1.
Let p1, . . . , pt be the distinct primes that divide M/s. Then for any positive
integer n,

an(E) ≡ σ
(

n

(n,M)

) t∏
i=1

pi
ordpi (n) mod r.

Since by Lemma 3.2, pi ≡ −1 mod r for i = 1, . . . , t, we see that an(E) ≡
an(g) mod r if n is coprime to s, and thus (E(q) − g(q)) mod r is a power
series in qs, i.e., there is an h(q) ∈ (Z/rZ)[[q]] with h(qs) ≡ (E(q)−g(q)) mod
r. By Lemma 3.5, h(q) is the q-expansion of a holomorphic modular form,
which we again denote h, in ω⊗2 on Γ0(M/s) defined over Z/rZ.

Let g′ = h/2. We shall now show that g′ is special of level M/s. Let n
be a positive integer, m′ = n

(n,s) , and e = ords(n) (so n = m′se). Then

an(h) = am′se(h) ≡ am′se+1(E − g) = am′se+1(E)− am′se+1(g) mod r. (2)

Now an(E) = am′(E)ase+1(E) since E is an eigenfunction and an(g) ≡
am′(g)ase+1(g) mod r since g is special. Putting this in (2), we get

an(h) ≡ am′(E)ase+1(E)− am′(g)ase+1(g)

≡ am′(g)(as(E)e+1 − as(g)e+1) mod r, (3)
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where the last congruence follows since am′(g) ≡ am′(E) mod r, considering
that m′ is coprime to s. Now

as(E)e+1 − as(g)e+1 = 1− (−1)e+1 ≡ 1− se+1 mod r, (4)

since by Lemma 3.2, s ≡ −1 mod r. Also,

1− se+1 = (1− s)(1 + s+ · · ·+ se) ≡ 2σ(se) mod r, (5)

again considering that by Lemma 3.2, s ≡ −1 mod r. Thus putting (5)
in (4), and the result in (3), we get

an(h) ≡ am′(g) · 2σ(se) ≡ 2σ

(
m′

(m′,M)

)∏
p|M

(−1)ordp(m
′) · σ(se) mod r, (6)

where the last congruence follows since g is special at level M . Now since
n = m′se, with m′ coprime to s and s -(M/s), we have

σ

(
m′

(m′,M)

)
σ(se) = σ

(
m′se

(m′,M)

)
= σ

(
m′se

(m′se,M/s)

)
= σ

(
n

(n,M/s)

)
(7)

and ∏
p|M

(−1)ordp(m
′) =

∏
p|M, p6=s

(−1)ordp(m
′se) =

∏
p|(M/s)

(−1)ordp(n). (8)

Using (7) and (8) in (6), and recalling that g′ = h/2, we see that

an(g′) ≡ σ
(

n

(n,M/s)

) ∏
p|(M/s)

(−1)ordp(n) mod r,

i.e., g′ is special of level M/s.

Starting with f mod r (note that r - 6N), and repeatedly using the
claim, we see that there is a holomorphic modular form that is special of
level 1, which is nontrivial since the coefficient of q is 1 mod r for a special
form (of any level). But by [Maz77, Lemma II.5.6(a)], there are no non-
trivial holomorphic modular forms of level 1 in ω⊗2 defined over a field of
characteristic other than 2 and 3. This contradiction proves the lemma.

In the proof above, the idea of “lowering levels” and getting a contra-
diction is taken from an observation in [Maz77], where N is prime and the
level is “lowered” only once (see the proof of Prop. II.14.1 on p. 114 of loc.
cit.). We noticed that the Fourier coefficients work out so nicely (in view of
Lemma 3.2) that the “level lowering” process can be repeated (when N is
not necessarily prime), giving the proof above.
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Remark 3.7. After a first draft of this paper was written, based on numer-
ical evidence, the author had conjectured in [Aga13] that if N is squarefree
and the odd part of E(Q)tor is non-trivial, then wp = −1 for at least one
prime p that divides N . This was proved recently by D. Lorenzini (preprint).
His techniques use explicit Weierstrass equations, and we hope that our proof
of Proposition 3.6 may still be useful if the main result of this article were
to be generalized to higher-dimensional abelian subvarieties A of J0(N) as-
sociated to newforms

4 Proof of Theorem 1.1

Recall that the hypotheses are that N is a square free integer and r is a
prime such that r -6N and r divides the order of A(Q)tor. We have to show
that r divides the order of the cuspidal subgroup C.

If p is a prime that divides N , then let δp = −wp if wp = −1 and
δp = p if wp = 1. By Proposition 3.6, for at least one p, we have wp = −1,
i.e., δp = 1. Hence by Proposition 2.1, there is an Eisenstein series E such
that for all primes ` -N , we have a`(E) = ` + 1, and for all primes p |N ,
ap(E) = 1 = −wp if wp = −1 and ap(E) = p if wp = 1. In view of
Lemma 3.2, if p | N and wp = 1, we have ap(E) = p ≡ −1 = −wp mod r.

Considering that f and E are eigenfunctions for all the Hecke operators,
we see from the paragraph above and by Lemma 3.1 that an(f) ≡ an(E) mod
r for all n ≥ 1. Hence (f(q)−E(q)) mod r is a constant; call this constant c.
Since r -6N , we may consider the holomorphic modular form (f −E) mod r
in ω⊗2 on Γ0(N) defined over Z/rZ. Using Lemma 3.5, for any prime p
dividing N we get a holomorphic modular form in ω⊗2 on Γ0(N/p) defined
over Z/rZ, whose q-expansion is the same constant c. By repeating this
process (which we can do since at each stage we have a q-expansion that
is constant – in fact, the same constant c), we get a holomorphic modular
form in ω⊗2 on Γ0(1) defined over Z/rZ, whose q-expansion is c. By [Maz77,
Lemma II.5.6(a)], there are no nontrivial holomorphic modular forms of
level 1 in ω⊗2 defined over a field of characteristic other than 2 and 3.
Thus c ≡ 0 mod r, and so an(f) ≡ an(E) mod r for n = 0 as well. Hence
f ≡ E mod r.

To E is associated a subgroup CE of C by Stevens (see [Ste82, Def. 1.8.5]
and [Ste85, Def. 4.1]). Since r -N , by Lemma 3.1, ar ≡ (1 + r) ≡ 1 mod r;
in particular, f is ordinary at r. By [Tan97, Thm 0.4], A[r] ∩ CE 6= 0, and
thus r divides the order of A ∩ C. The fact that r divides the order of CE
follows from the intermediate result Prop. 1.9 of [Tan97] as well. This proves

10



part (i) of Theorem 1.1. As mentioned in the introduction, part (ii) follows
from part (i) by taking ` = r in [Dum05, Thm. 1.2] (Dummigan’s theorem
in turn follows from the proof of Prop. 5.3 in [Vat05]).

Remark 4.1. Neil Dummigan remarked to us that one need not use [Dum05,
Thm. 1.2] to deduce part (ii) of Theorem 1.1 from part (i) since our methods
prove a special case of [Dum05, Thm. 1.2] that if A′ is an elliptic curve of
square free conductor N having a rational point of order r for a prime r
such that r - 6N , then the optimal curve A in the isogeny class of A′ also
has a rational point of order r. Clearly, this shows that part (ii) implies
part (i). The proof of the claim above is as follows: Lemma 3.1 holds with
A replaced by A′ under the additional hypothesis that r is odd (by consid-
ering reduction modulo `, we see that if ` is a prime such that ` -N , then
r divides |A′(F`)| = |A(F`)| = a`(f) − (1 + `)) and Lemma 3.2 also holds
with A replaced by A′ (the fact that wp = 1 implies that A has non-split
multiplicative reduction; hence so does A′ and the proof goes through with
A replaced by A′). In the proofs of Proposition 3.6 and Theorem 1.1, the
only place where the hypothesis that A has a rational point of order r is
used is in quoting Lemmas 3.1 and 3.2. Since the conclusions of these Lem-
mas hold under the hypothesis that A′ (instead of A) has a rational point
of order r (and the hypothesis that r is odd, which is already assumed in
Theorem 1.1), the proof of Theorem 1.1 goes through to prove that A has a
rational point of order r, as claimed.
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