Conjectures concerning the orders of the torsion
subgroup, the arithmetic component groups, and
the cuspidal subgroup

Amod Agashe*

Abstract

We make several conjectures concerning the relations between the
orders of the torsion subgroup, the arithmetic component groups, and
the cuspidal subgroup of an optimal elliptic curve. These conjectures
have implications for the second part of the Birch and Swinnerton-Dyer
conjecture.

1 Introduction

Let E be an optimal elliptic curve and let N denote its conductor. Thus
E is associated to a newform f of weight 2 on I'g(/N) with integer Fourier
coefficients, and by dualizing, F may be viewed as an abelian subvariety
of Jo(N), which we shall do henceforth. We may often refer to N also as
the level. Let C' denote the cuspidal subgroup of Jy(N), i.e., the subgroup
of Jo(IN)(C) generated by the degree zero divisors that are supported on the
cusps of Xo(N)(C). Let Cg = E(C)NC; we call Cg the cuspidal subgroup
of E. If p is a prime that divides N, then let ¢,(FE) denote the order of the
arithmetic component group of E at p (also called the Tamagawa number
of E at p). If N is prime, then by [Maz77, Thm. I1.1.2], Jo(N)(Q)ier = C,
so that E(Q)or = Cp, and it follows from parts (v) and (vi) of Theorem B
in [Eme03] that |E(Q)tor| = ¢y (E). Thus if N is prime, then

[E(Q)ior| = [Cr| = [ ea(B). (1)
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This set of equalities in (1) has implications for the Birch and Swinnerton-
Dyer (BSD) conjecture, as we now discuss. Let Lg(s) denote the L-function
of E. The first part of the BSD conjecture asserts that the Mordell-Weil
rank of E equals the order of vanishing of Lg(s) at s = 1. Let Kg denote
the coefficient of the leading term of the Taylor series expansion of Lg(s)
at s = 1, and let Rg denote the regulator of E. Let Qg denote the volume
of E(R) calculated using a generator of the group of invariant differentials
on the Néron model of E. Then the second part of the BSD conjecture
asserts the formula:

Kp o gl T1,(F)
QE : RE |E(Q)t0r’2

The equalities in (1) indicate that when N is prime, there is significant
cancellation on the right side of the BSD conjectural formula (2).

The quantities in (1) are not necessarily equal when N is not prime.
This article is an effort to see what relations one might expect between the
quantities in (1) and what cancellations one may expect on the right side
of the BSD conjectural formula (2) when N need not be prime. We make
several conjectures in this regard in the next section, and also make some re-
lated conjectures. Unless mentioned otherwise, all of these conjectures were
tested on Cremona’s database [Cre] for optimal elliptic curves of conductor
up to 130000, using the mathematical software Sage.
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2 Conjectures

To start with, we conjecture the following relationship between FE(Q)ior

and Cg:
Conjecture 2.1. If N is square-free, then E(Q)ior C C.

In other words we conjecture that F(Q)or = CE, i.e., the entire rational
torsion in F is accounted for by the cuspidal subgroup of Jy(N) when N is



square-free. As mentioned earlier, the conjecture is known to be true if N
is prime. W. Stein has checked the conjecture above for all E of conductor
up to 1000. There is a partial result towards the conjecture above: by the
main theorem of [Aga07], if N is square-free and 7 is a prime that does not
divide 6N, but divides |E(Q)tor|, then r divides |Cg|. It seems possible that
the hypothesis that N is squarefree is not needed in the conjecture above
(we do not have sufficient data and theoretical results to justify removing
the hypothesis).

One of the inputs in the main theorem of [Aga07] quoted above is the
fact (Proposition 3.5 in [Aga07]) that under the hypotheses as above on r,
wp = —1 for at least one prime p that divides N. This (and numerical
evidence) motivates the following conjecture:

Conjecture 2.2. If N is square-free and E(Q)tor is non-trivial, then w, =
—1 for at least one prime p that divides N.

The hypothesis that N is square-free is required. For example, the
elliptic curve 162al (note that 162 = 2 * 3*) has a 3-torsion point, but
wp = 1 for all p dividing 162. At the same time, there are no examples of
elliptic curves with conductor less than 130000 that have a 5 or 7-torsion
point, and w, = 1 for all primes p dividing the conductor.

Next we discuss the relationship between the torsion order and the
Tamagawa product. First, we have:

Proposition 2.3. Let ¢ be an odd prime such that either £ 1 N or for all
primes r that divide N, ¢ 1 (r — 1). If £ divides the order of the geometric
component group of E at p for some prime p||N, then either E[{] is reducible
or the newform f is congruent to a newform of level dividing N/p (for all
Fourier coefficients whose indices are coprime to N{) modulo a prime ideal
over £ in a number field containing the Fourier coefficients of both newforms.

Proof. By [Eme03, Prop. 4.2], if ¢ divides ¢,(FE) for some prime p that
divides N, then for some maximal ideal m of T having characteristic ¢
and containing Iy, either pn is finite at p or is reducible (here, py is the
canonical two dimensional representation associated to m, e.g., as in [Rib90,
Prop. 5.1]). So if E[/] is irreducible, then py is finite at p, and by [Rib90,
Thm. 1.1], in view of the hypotheses that either ¢ + N or for all primes p
that divide N, £4 (p — 1), f is congruent modulo ¢ to a newform of a level
dividing N/p (for Fourier coefficients of index coprime to N¥). O

The proposition above (and numerical evidence) motivates the following
conjecture.



Conjecture 2.4. If an odd prime { divides cp(E) for some prime p that
divides N, then either { divides |E(Q)tor| or the newform f is congruent to
a newform of level dividing N/p (for all Fourier coefficients whose indices
are coprime to N¥) modulo a prime ideal over £ in a number field containing
the Fourier coefficients of both newforms.

Note that in Conjecture 2.4 above, we have dropped the hypotheses
made in Proposition 2.3 above that p||N and either £{ N or for all primes r
that divide N, £1 (r — 1). Also, the statement of Conjecture 2.4 is stronger
than the conclusion of Proposition 2.3: we claim that ¢ divides |E(Q)or|, not
just that E[¢] is reducible. We checked the conjecture above for conductors
up to 1010 in Sage with the help of W. Stein. Later, Randy Heaton [Hea]
checked the conjecture for conductors up to 1500, and also for several con-
ductors bigger than 1500 that are smooth.

Related to Proposition 2.3 and Conjecture 2.4 above is the following:

Conjecture 2.5. If N is square-free and for some odd prime £, E[{] is
reducible, then E has an £-torsion point.

The hypothesis that N is square-free in the conjecture above is essential.
For example, for E = 99d1, E[5] is reducible, but E has no rational 5-
torsion. If N is square-free, then as mentioned in [Cal01, p. 494-495], it
follows from [Ser72] that if F is a semistable elliptic curve and p is a prime
such that Ep| is reducible, then either E or an elliptic curve isogenous to
it has a rational p-torsion point (however, we do not know if E itself has a
rational p-torsion point, which is what we want).

Conjecture 2.4 is about when a prime dividing the Tamagawa product
may divide the torsion order. The following conjecture goes in the other
direction:

Conjecture 2.6. Let ¢ > 3 be a prime. Then the order of the £-primary
part of E(Q)tor divides [, cp(E).

Of course if £ > 3 is a prime such that the ¢-primary part of F(Q)tor
is non-trivial, then the only possibilities for £ are 5 and 7, and so in Con-
jecture 2.6, we could have just said that £ = 5 or 7 instead of saying that £
is a prime bigger than 3. However, the reason for phrasing the conjecture
as above is the hope that its statement would hold for abelian subvarieties
of Jo(N) associated to newforms (that need not be elliptic curves). After
this article was written, Conjecture 2.6 above was proved by D. Loren-
zini [Lor] (for elliptic curves — Lorenzini’s techniques involve explicit Weier-
strass equations). We remark that the statement of the conjecture fails for



¢ = 3. For example, the elliptic curve 91b1l has torsion order 3 and Tama-
gawa product 1. The curve 91b1 was the only one with squarefree conductor
at most 130000 where there was a counterexample for £ = 3.

Conjectures 2.4 and 2.6 indicate significant cancellation on the right
side of the BSD formula (2) even if N is not prime. As for how to account
for the primes that do not cancel, the author only has some guesses — see
the discussion towards the end of Section 1 in [Agal0].
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