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Abstract

Let E be an optimal elliptic curve over Q of conductor N having
analytic rank one, i.e., such that the L-function Lg(s) of E vanishes to
order one at s = 1. Let K be a quadratic imaginary field in which all
the primes dividing NV split and such that the L-function of E over K
vanishes to order one at s = 1. Suppose there is another optimal
elliptic curve over Q of the same conductor N whose Mordell-Weil
rank is greater than one and whose associated newform is congruent
to the newform associated to E modulo an integer r. The theory
of visibility then shows that under certain additional hypotheses, r
divides the product of the order of the Shafarevich-Tate group of E
over K and the orders of the arithmetic component groups of E. We
extract an explicit integer factor from the Birch and Swinnerton-Dyer
conjectural formula for the product mentioned above, and under some
hypotheses similar to the ones made in the situation above, we show
that r divides this integer factor. This provides theoretical evidence
for the second part of the Birch and Swinnerton-Dyer conjecture in the
analytic rank one case.

1 Introduction

Let N be a positive integer. Let Xy(IN) be the modular curve over Q
associated to I'g(N), and let J = Jy(N) denote the Jacobian of Xo(N),
which is an abelian variety over Q. Let T denote the Hecke algebra, which
is the subring of endomorphisms of Jy(/N) generated by the Hecke operators
(usually denoted 7y for ¢ { N and U, for p | N). If f is a newform of
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weight 2 on I'g(IN), then let Iy = Annytf and let Ay denote the associated
newform quotient J/I¢J, which is an abelian variety over Q. Let m denote
the quotient map J—J/I;J = Ay. By the analytic rank of f, we mean
the order of vanishing at s = 1 of L(f,s). The analytic rank of Ay is then
the analytic rank of f times the dimension of A;. Now suppose that the
newform f has integer Fourier coefficients. Then Ay is an elliptic curve, and
we denote it by F instead. Since E has dimension one, it has analytic rank
one.

Let K be a quadratic imaginary field of discriminant not equal to —3
or —4, and such that all primes dividing N split in K. Choose an ideal N of
the ring of integers O of K such that Ox /N = Z/NZ. Then the complex
tori C/Of and C/N ! define elliptic curves related by a cyclic N-isogeny,
and thus give a complex valued point x of Xo(/N). This point, called a
Heegner point, is defined over the Hilbert class field H of K. Let P € J(K)
be the class of the divisor 3 c a1 m/x)((2) — (00))7, where H is the Hilbert
class field of K.

By [Wal85], we may choose K so that L(E/K,s) vanishes to order one
at s = 1. Hence, by [GZ86, §V.2:(2.1)], 7(P) has infinite order, and by work
of Kolyvagin, E(K) has rank one and the order of the Shafarevich-Tate
group III(E/K) of E over K is finite (e.g., see [Kol90, Thm. A] or [Gro91,
Thm. 1.3]). In particular, the index [E(K) : Zn(P)] is finite. By [GZ86,
§V.2:(2.2)] (or see [Gro91, Conj. 1.2]), the second part of the Birch and
Swinnerton-Dyer (BSD) conjecture becomes:

Conjecture 1.1 (Birch and Swinnerton-Dyer, Gross-Zagier).

E(K)/Zn(P)| £ ¢x - [] ee(B) - II(E/K)], (1)

(N

where cg is the Manin constant of E, c¢o(E) denotes the arithmetic compo-
nent group of E at the prime £, and the question mark above the equality
sign emphasizes that this equality is conjectural.

Note that the Manin constant cg is conjectured to be one, and one
knows that if p is a prime such that p? { 4N, then p does not divide cp
(by [Maz78, Cor. 4.1] and [AU96, Thm. A]).

Now suppose that f is congruent modulo a prime p to another new-
form g with integer Fourier coefficients, whose associated elliptic curve F'
has Mordell-Weil rank over Q bigger than one. Let r denote the highest
power of p modulo which this congruence holds. Then the theory of visibil-

ity (e.g., as in [CMO0]) often shows that r divides [, c¢(E)-+/[HI(E/K))|,
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which in turn divides the right side of (1); we give precise results along these
lines in Section 3. When this happens, the conjectural formula (1) says that
r should also divide the index |E(K)/Zn(P)|, which is the left side of (1). In
Section 4, we extract an explicit integer factor from the index |E(K)/Zn(P)|
(see Corollary 4.3), and under hypotheses similar to the ones made in the
results coming from visibility, we show that  divides this integer factor (see
Theorem 4.4). In fact, the only primes that can divide this factor are the
ones modulo which f and g are congruent. Finally, in Section 5 we give the
proof of our main result (Theorem 4.4). Section 2 is concerned with proving
some results about the equality of r-torsion in the duals of F and F' under
a certain multiplicity one hypotheses; these results in turn are used to give
examples where certain hypotheses in Sections 3 and 4 hold. The reader
who is interested in seeing only the precise statements of our main results
may read Sections 2, 3, and 4, skipping proofs and remarks. Note that in
each section, we continue to use the notation introduced in earlier sections
(unless mentioned otherwise).

Acknowledgements: We would like to thank the Tata Institute of Funda-
mental Research for their kind hospitality during a visit when the author
worked on this paper.

2 Multiplicity one

If A is an abelian variety, then we denote its dual abelian variety by AY. If h
is a newform of weight 2 on I'g(/V), then by taking the dual of the quotient
map Jo(N)—Aj, and using the self-duality of Jo(N), we may view A) as
an abelian subvariety of Jo(N). In particular, we may view EV and F" as
abelian subvarieties of Jy(INV). The goal of this section is to give conditions
under which EV[r] = FY[r], which is a hypothesis that is used in Sections 3
and 4. This section may be of interest independent of results in the rest of
this article.

We say that a maximal ideal m of T satisfies multiplicity one if Jo(IN)[m]
is two dimensional over T /m. Consider the following hypothesis on p:
(*) if m is a maximal ideal of T with residue characteristic p and m is in the
support of Jo(N)[{ + I,], then m satisfies multiplicity one.

Lemma 2.1. Suppose p is odd, and either
(i) pIN or

(ii) p||N and E|p] or F|p| is irreducible.
Then p satisfies hypothesis (*).



Proof. If p4 N, then the claim follows from Theorem 5.2(b) of [Rib90], so let
us assume that p||N. Let m be a maximal ideal of T with residue character-
istic p that is in the support of Jo(N)[Is+1,]. Then m contains I+ I, hence
it also contains Iy and I,. By the proof of Corollary 1.4 of [Aga08a], the
hypothesis that either E[p| or F[p] is irreducible implies that the canonical
semi-simple representation pn associated to m (see, e.g., [Rib90, Prop. 5.1]
for the definition of pp) is irreducible. In view of this, Proposition 1.3
of [Aga08a] tells us that m satisfies multiplicity one. O

Lemma 2.2. Suppose p satisfies hypothesis (*). Then EV[r] = FV[r], and
both are direct summands of EY N FY as Gal(Q/Q)-modules.

Proof. By [Eme03, Cor. 2.5], if m satisfies multiplicity one and [ is any
saturated ideal of T, then the m-adic completion of the group of connected
components of Jo(N)[I] is trivial. If L—M is a homomorphism of two T-
modules, then we say that L = M away from a given set of maximal ideals
if the induced map on the m-adic completions is an isomorphism for all
maximal ideals m that are not in the prescribed set. Thus, the inclusions
EY C Jo(N)[Iy] and FY C Jo(N)[I4] are equalities away from maximal
ideals that do not satisfy multiplicity one.

Claim: Then EY N FY C Jo(N)[If + I,] is an equality away from maximal
ideals that do not satisfy multiplicity one.

Proof. Consider the natural map FY' NJo(N)[If]—Jo(N)[If]/EY. It’s kernel
is V' N Jo(N)[I;)NEY = FY NEY, and hence we have an injection:
FY NI NI
FVNEY EY

Also, the natural map Jo(N)[I; + 1] = Jo(N)[L]|[Lf]—Jo(N)[Ig]/F" has
kernel FY N Jo(N)[Ig][If] = F¥Y N Jo(N)[Iy], and hence we have an injection

Jo(N){Iy + I, Jo(N)[Zy] 3)
FV O Jo(N) (1] FV

The claim follows from equations (2) and (3), considering that the Hecke
modules on the right sides of the two equations are supported on the set of
maximal ideals of T that do not satisfy multiplicity one (by the statment
just before the claim). O

Now EY NFY C EV[I; + 1) C Jo(N)[Iy + Ig]. Hence if m denotes the
largest integer such that f and g are congruent modulo m, then EY N FY C



EV[Iy + I;) = EY[m] is an equality away from the maximal ideals in the
support of Jo(N)[If + I,] that do not satisfy multiplicity one. Similarly
EVYNFY C FV[I; + I;] = FY[m] is an equality away from the maximal
ideals in the support of Jo(N)[I¢ + I,] that do not satisfy multiplicity one.
From the hypotheses (*) on p and the definition of r, it follows then that
(EY N FY)[p>®] = EV[r] = FV[r]. Thus EV[r] and F"[r| are identical and
are direct summands of EY N FY as Gal(Q/Q)-modules. O

3 Results from the theory of visibility

Proposition 3.1. (i) Suppose that p is coprime to

N - |(Jo(N)/EV)(E ror| - |1F (K o] - [ T ee(F).

(N

Then r divides [],y ce(E) - /|II(E/K)|, which in turn divides the right
hand side of the Birch and Swinnerton-Dyer conjectural formula (1).

(ii) Suppose that f is congruent to g modulo an odd prime q such that E|q|
and F[q] are irreducible and q does not divide

N | (Jo(N)/FY)(E )tor| - [F (K )son-

Also, assume that f is not congruent modulo q to a newform of a level
dividing N/{ for some prime { that divides N (for Fourier coefficients of
indez coprime to Nq), and either g4 N or for all primes ¢ that divide N,
q1 (¢ —1). Then q divides |II(E/K)].

Proof. Both results follow essentially from Theorem 3.1 of [AS02]. For the
first part, take A = EV, B = FY, and n = r in [AS02, Thm. 3.1], and
note that FV[r] C EY by Lemmas 2.1 and 2.2, considering that p { N by
hypothesis, and that the rank of EV(K) is less than the rank of FV(K). For
the second part, take A = EY, B = FY, and n = ¢ in [AS02, Thm. 3.1],
and note that the congruence of f and g modulo g forces FV[q] = EV[q]
by [Rib90, Thm. 5.2] (cf. [CMO0O, p. 20]), and that the hypotheses imply
that g does not divide ¢¢(E) or ¢;(F') for any prime ¢ that divides N, as we
now indicate. By [Eme03, Prop. 4.2], if ¢ divides ¢;(E) for some prime ¢ that
divides N, then for some maximal ideal m of T having characteristic ¢ and
containing I, either py is finite or reducible. Since E[q] is irreducible, this
can happen only if py, is finite. But this is not possible by [Rib90, Thm. 1.1],
in view of the hypothesis that f is not congruent modulo ¢ to a newform of
a level dividing N /¢ for any prime ¢ that divides N (for Fourier coefficients



of index coprime to Ngq), and either ¢t N or for all primes ¢ that divide N,
g1 (£ —1). Thus q does not divide ¢;(FE) for any prime ¢ that divides N.
Similarly, g does not divide c¢(F") for any prime ¢ that divides IV, considering
that the hypothesis that f is not congruent modulo ¢ to a newform of a level
dividing N /¢ for any prime ¢ that divides N (for Fourier coefficients of index
coprime to Nq) applies to g as well, since g is congruent to f modulo g. This
finishes the proof of the proposition. O

Remark 3.2. One might wonder how often it happens in numerical data
that visibility explains the Shafarevich-Tate group of an elliptic curve of
analytic rank one. Since it is difficult to compute the actual order of the
Shafarevich-Tate group, we looked at the Birch and Swinnerton-Dyer con-
jectural orders in Cremona’s online “Elliptic curve data” [Cre|. For levels
up to 30000, we found only one optimal elliptic curve of Mordell-Weil rank
one for which the conjectural order of the Shafarevich-Tate group was di-
visible by an odd prime: the curve with label 28042A, for which the con-
jectural order of the Shafarevich-Tate group is 9. At the same level, the
curve 28042B has Mordell-Weil rank 3 and the newforms corresponding to
28042A and 28042B have Fourier coefficients that are congruent modulo 3
for every prime index up to 100. While this is not enough to conclude that
the newforms are congruent modulo 3 for all Fourier coefficients (cf. [AS]),
it is quite likely that this is true and that this congruence explains the non-
trivial Shafarevich-Tate group, although we have not checked the details (in
particular whether the hypotheses of Proposition 3.1 are satisfied), since our
goal in this paper is to prove theoretical results. It would be interesting to do
systematic computations to see how much of the Birch and Swinnerton-Dyer
conjectural order of the Shafarevich-Tate group is explained by visibility for
elliptic curves of analytic rank one (similar to the computations in [AS05]
for the analytic rank zero case).

4 A visible factor

Considering that under certain hypotheses, the theory of visibility (more pre-
cisely Proposition 3.1(1)) implies that r divides divides [, c,(E)-/|IL(E/K),
which in turn divides the right hand side of the Birch and Swinnerton-Dyer
conjectural formula (1), under similar hypotheses, one should be able to
show that r also divides |E(K)/Zm(P)|, which is the left hand side of (1).
Now the theory of Euler systems says under certain hypotheses that the
order of HI(E/K) divides its Birch and Swinnerton-Dyer conjectural order
(e.g., see [Kol90, Thm. A]). Thus, in conjunction with Proposition 3.1, the



theory of Euler systems shows that under certain additional hypotheses, r
does divides |E(K)/Zn(P)|. For example, we have the following:

Proposition 4.1. Suppose that p is coprime to

2N - |(Jo(N)/FY) (K )ror| - [F (K )ror| - [ [ eel B).

oN

Assume that the image of the absolute Galois group of Q acting on E[p| is
isomorphic to GLo(Z/pZ) and p divides at most one c(E). Then r divides
|E(K)/Zm(P)|.

Proof. Proposition 3.1, which uses the theory of visibility, implies that r di-
vides [, ce(E)-/|II(E/K)|. The result now follows from [Jet07, Cor. 1.5],
which uses the theory of Euler systems. O

In this section, we extract an explicit integer factor from |E(K)/Zn(P)],
and show that under certain hypotheses, r divides this factor. These hy-
potheses in particular do not include the hypotheses needed in the theory
of Euler systems that p { N, that p divides at most one ¢;(F), and that
the image of the absolute Galois group of Q acting on E[p] is isomorphic
to GLa(Z/pZ), nor the hypotheses needed in the theory of visibility that
p does not divide N - [F(K)tor| - [],y ce(F). Also, our proof does not use
the theory of visibility or the theory of Euler systems, and is much more
elementary than either theories. In fact, our approach may be considered an
alternative to the theory of Euler systems in the context where the theory
of visibility predicts non-triviality of Shafarevich-Tate groups for analytic
rank one.

Recall that I; = Anngg. Let J' = J/(If N1,)J and let 7" denote the

quotient map J—.J’. Then the quotient map J — E factors through J';
let 7’ denote the map J'—F in this factorization. Let I’ denote the kernel
of /. Thus we have the following diagram:

J

0 F’ J’
Proposition 4.2. We have

J'(K)

‘ - ker (HY (K, F')—H'(K,J))|. (4)



Proof. Consider the exact sequence 0—F’—.J'—E—0. Part of the associ-
ated long exact sequence of Galois cohomology is

0—F'(K)—J'(K) L E(K) LA HYK,F)—-HYK,J)— -, (5)

where ¢ denotes the boundary map. Note that in this proof, the letters 7’
and 7" denote 7’ and 7" restricted to the K-valued points in their domain.
Since 7"/ (TP) C J'(K), by the exactness of (5) we see that é(7'(7”(TP))) =
0. Using the exactness of (5) again, we see that ¢ thus induces a surjection

¢ : B(K)/7'(n"(TP))—ker(H' (K, F')—H' (K, J")).

Since 7'(J'(K)) C ker(d), we see that 7' induces a natural map 1 :
J'(K)— ker(¢).

Claim: 1 is surjective and its kernel is F'(K) + «”(TP).

Proof. Let € J'(K). Then

z € ker(y)) <= 7'(z) =0 € ker(¢) — E(K)/n'(z"(TP))

— 7'(z) € «'(«"(TP))

< FHteT:z—7n"tP) € ker(n') = F/(K)

< z € F'(K)+ «"(TP).
Thus ker(¢) = F'(K)+ 7" (TP). To prove surjectivity of ¢, note that given
an element of ker(¢), we can write the element as y + 7’(7”(TP)) for some

y € F(K) such that 6(y) = 0. Then by the exactness of (5), y € Im(n'),
hence y + 7/ (7”(TP)) € Im(¢)). This proves the claim. O

By the discussion above, we get an exact sequence:

J'(K) v BE(K)

0= B ) + 7/(TP)  #(x(TP))

% ker (H'(K, F))—~H'(K, J'))—0, (6)

where v’ is the natural map induced by 1. Now
|E(K)/'(x"(TP))| = |E(K)/(TP)]

and the latter group is finite in our situation. Hence all groups in (6) are
finite, and Proposition 4.2 now follows from the exactness of (6). O

Let E’ denote the image of EV C .J in J’ under the quotient map 7 : J—J’
and let 7”(TP)s denote the free part of 7”(TP). The following result is
essentially repeated from [AgaO8b]:



Corollary 4.3. We have 7""(TP)y C E'(K) with finite index, and

|E(K)/m(TP)| (7)
J(K) | P
. 1 / 1 / . 4 f
a f

Proof. If h is an eigenform of weight 2 on I'y(NV), then TPNA)/ (K) is infinite
if and only if h has analytic rank one (this follows by [GZ86, Thm 6.3] if
h has analytic rank bigger than one, and the fact that A (K) is finite if h

has analytic rank zero, by [KL89]). The composite EY ™ E' T Eis an
isogeny, and so J' is isogenous to E' @ F’. Considering that F’ has analytic
rank greater than one, we see that the free part of E'(K) contains 7" (TP).
The corollary now follows from equation (4). We remark that the transition
from equation (4) to equation (7) is analogous to the situation in the rank
one case (cf. Theorem 3.1 of [Aga07] and its proof), where the idea is due
to L. Merel. O

The reason for the factoring |E(K)/m(TP)|, which is the left side of
the Birch and Swinnerton-Dyer conjectural formula (1), as in equation (7)
is the following:

Theorem 4.4. Suppose that EV[r] = F[r|, and both are direct summands
of VN FY as Gal(Q/Q)-modules. Then r divides the product

J'(K)
‘F’(K) +E(K

) ’ - |ker(H' (K, F)—H' (K, J")| . (8)

We will prove this theorem in Section 5. We remark that by Prop. 1.3
of our companion paper [AgaO8b], if a prime ¢ divides the product above,
then ¢ divides the order of the intersection EV N FV; in particular, f and g
are congruent modulo ¢ (e.g., by [ARS06, Thm 3.6(a)]), which is a partial
converse to the theorem above. Also, by Theorem 1.4 of [AgaO8b], if a
prime ¢ divides the product in (8), then under certain hypotheses (the most
serious of which is the first part of the Birch and Swinnerton-Dyer conjecture
on rank), it follows from the theory of visibility that ¢ divides /|II(E/K)|-
[Ign ce(E). For this reason we call the product in (8) a visible factor, and
this is the factor we alluded to in the abstract.

Corollary 4.5. (i) Suppose that the prime p satisfies hypothesis (*) and that
p s coprime to the order of the torsion subgroup of the projection of TP
in Jo(N)/(If N1g)Jo(N). Then r divides |E(K)/Zm(P)|, which is the left



hand side of the Birch and Swinnerton-Dyer conjectural formula (1).

(ii) Suppose p is odd, p is coprime to the order of the torsion subgroup of
the projection of TP in Jo(N)/(If N1y)Jo(N), and either

(a) pEN or

(b) p||N and Elp| or F[p] is irreducible.

Then r divides |E(K)/Zn(P)|, which is the left hand side of the Birch and
Swinnerton-Dyer conjectural formula (1).

Proof. We first prove part (i). By Lemma 2.2, the hypothesis that p sat-
isfies (*) implies the hypothesis in Theorem 4.4 that EV[r] = FY[r| and
both are direct summands of EY N FY as Gal(Q/Q)-modules. The sec-

ond hypothesis on p implies that r is coprime to the term ‘%‘
in equation (7). Part (i) now follows from equation (7) and Theorem 4.4.
Part (ii) follows from Part (i) considering that the hypothesis (*) is satisfied,

in view of Lemma 2.1. O

Corollary 4.6. Suppose q is an odd prime such that ¢* 1 N, E[q] and F|[q]
are irreducible, and q does not divide |Jo(N)(K)tor|- Let m denote the
highest power of q modulo which f and g are congruent. Then m divides
|E(K)/Zn(P)|. If moreover, f is not congruent modulo q to a newform of a
level dividing N/€ for some prime £ that divides N (for Fourier coefficients
of index coprime to Nq), and either gt N or for all primes ¢ that divide N,
qt (£ —1), then m divides the Birch and Swinnerton-Dyer conjectural order
of II(E/K).

Proof. Take p = ¢ in Corollary 4.5(i). By Lemma 2.1, ¢ satisfies hypoth-
esis (*). The hypothesis that ¢ does not divide |Jo(NN)(K )tor| implies the
hypothesis in Corollary 4.5(i) that p is coprime to the order of the tor-
sion subgroup of the projection of TP in Jo(N)/(If N Iy)Jo(IN). Hence
by Corollary 4.5(i), m divides |E(K)/Zn(P)|. As explained in the proof of
Proposition 3.1(ii), the hypotheses imply that ¢ does not divide ¢;(E) for any
prime £. Also, by [Maz78, Cor. 4.1], ¢ does not divide the Manin constant c.
Hence, by (1), m divides the Birch and Swinnerton-Dyer conjectural order
of III(E/K). O

In view of Proposition 3.1, Corollaries 4.5(ii) and 4.6 provide theoreti-
cal evidence towards the Birch and Swinnerton-Dyer conjectural formula (1).
We remark that Corollary 4.5(ii) is to be compared to part (i) of Proposi-
tion 3.1 and Corollary 4.6 to part (ii) of Proposition 3.1. Regarding the
hypothesis in Corollary 4.6 that ¢ does not divide |Jo(N)(K )tor|, we do not
know of any results that would give some criteria on ¢ which would imply
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that this hypothesis holds (unlike the similar situation over Q, where at least
for prime N, we know by [Maz77, Thm (1)] that |Jo(N)(Q)tor| equals the
numerator of %) As in Corollary 4.5, we could have replaced this hypoth-
esis by the requirement that p is coprime to the order of the torsion subgroup
of the projection of TP in Jo(N)/(Iy N14)Jo(N). Note that there is some
similarity between these hypotheses and the hypothesis in Proposition 3.1
that p does not divide |(Jo(N)/FY)(K)tor|- In any case, our discussion just
above emphasizes the need to study the torsion in Jo(/V) and its quotients
over number fields other than Q.

Our Corollary 4.5(ii) may be compared to the similar Proposition 4.1
that uses the theory of visibility and the theory of Euler systems. Note
that in our corollary, we do not assume the following hypotheses of Proposi-
tion 4.1: pfN (although we do need that p?{N), p divides at most one c;(E),
p does not divide |F'(K)tor| - [,y ce(F), and the image of the absolute Ga-
lois group of Q acting on Elp] is isomorphic to GLa(Z/pZ). We do have the
hypothesis in Corollary 4.5(ii) that p is coprime to the order of the torsion
subgroup of the projection of TP in Jo(N)/(IfN1g)Jo(N), but this is some-
what similar to the hypothesis in in Proposition 4.1 that p does not divide
[(Jo(N)/FV Y (K Do

5 Proof of Theorem 4.4

We work in slightly more generality in the beginning and assume that f and g
are any newforms (whose Fourier coefficients need not be integers). Thus
the associated newform quotients Ay and A, need not be elliptic curves,
but we will still denote them by E and F' (respectively) for simplicity of
notation.

Recall J' = J/(IyN1,)J, E' is the image of E in J' under the projection
map 7’ : J—J', 7’ denotes the projection J'—A; = E, and F' = kern’.
Our goal is to show that r divides

J(K)
‘F’(K) +E(K

) ‘ - [ker(H'(K, F')—H' (K, J"))| . (9)

Let B denote the kernel of the projection map « : J—FE; it is the abelian
subvariety I;J of J. We have the following diagram, in which the two se-
quences of four arrows are exact (one horizontal and one upwards diagonal):

11



Now F” is connected, since it is a quotient of B (as a simple diagram
chase above shows) and B is connected. Thus, by looking at dimensions,
one sees that F’ is the image of F'V under 7”. Since the composite FV —
J—J —F is an isogeny, the the quotient map J'—F induces an isogeny
7’(FV) ~ F, and hence an isogeny F’' ~ F. Thus F’ and F have the same
rank (over Q or over K). Let E' denote 7”/(E"). Since 7 induces an isogeny
from EY to E, we see that 7’ also induces an isogeny from E’ to E. Thus
E’ and FE have the same rank (over Q or over K).

Now we impose the assumption that f and g have integer Fourier coeffi-
cients, so that I and F' are elliptic curves. Recall that we are assuming that
EV[r] = FV[r] and that both are direct summands of EVYNFY as Gal(Q/Q)-
modules. On applying 7", we find that E’[r] = F'[r] and both are direct
summands of E'NF’ as Gal(Q/Q)-modules. In particular, the natural maps
HY(K,E'lr]) - HY(K,E'NF') and H (K, F'[r]) - H' (K, E' N F’) are in-
jections. Recall that E has analytic rank one and F' has Mordell-Weil rank
more than one. Then the abelian group F(K) has rank more than one, and
as remarked just before Conjecture 1, the abelian group F(K) has rank one.
Also, note that the newform ¢ has analytic rank greater than one, since
otherwise the Mordell-Weil rank of F' would be at most one. With an eye
towards potential generalizations, we remark that after this paragraph, we
will not explicitly use the fact that E and F' have dimension one (i.e., are
elliptic curves). Thus if the conclusions of this paragraph are satisfied, then
the rest of the argument would go through even if £ and F' have dimension
greater than one.

Consider the following commutative diagram, where the top and bottom
rows are the Kummer exact sequences of E’ and F’ respectively, and the
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other maps are the obvious natural maps:

0= E'(K)/rE'(K) —> H'(K, E'lr]) — H(K, E')lr

YK, E"

/

KE’ﬂF’

/ / o

0—— F'(K)/rF'(K )HHI(K F'lr]) —— HY(K, F')[r

Let @ be a generator for the free part of E'(K) (which is isomorphic to
the free part of E(K)). Then from the top exact sequence in the diagram
above, we see that @ gives rise to a non-trivial element o in H'(K, E'[r]).

Let r’ be the smallest positive integer such that o € §'(F'(K)/rF'(K))
(where 0’ is the boundary map in the Kummer exact sequence associated
to F’, as indicated in the diagram above). Thus r/ divides r (since ro =
0 € §(F'(K)/rF'(K))). Then, by the top and bottom exact sequences in
the diagram above, r'c maps to the trivial element in both H(K, E')[r]
and H'(K, F')[r], and hence in H!(K,E') and H'(K,F’). The image of
r'o in HY(K,E' N F’) is then a non-trivial element of order r/r’" that dies
in HY(K, F') and in H'(K, E'). Thus we see that r/r’ divides the order of
ker(HY (K, E'NF)—»H'(K,E' © F')).

Lemma 5.1. We have

rE S
PR + B o P )= HA(K BT6 ).

Proof. Following a similar situation in [CMO00], consider the short exact
sequence

0—E' NF'—E' & F—J—0, (10)

where the map E'NF'—FE’ & F’ is the anti-diagonal embedding x +— (—z, z)
and the map E' @ F'—J' is given by (z,y) — x + y. Part of the associated
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long exact sequence is
- —=E(K)® F(K)—-J (K)-HYK,E'NF)—H"K,E' © F')— -,
from which we get the lemma. O

By the lemma and the discussion preceding it, we see that r/r’ di-
vides |%|, which is the first factor in (9).

If ¥/ = 1, then we are done, so let us assume that 7/ > 1. Then
o ¢ (F'(K)/rF'(K)). So while the image of o in H'(K, E')[r] is trivial by
the top exact sequence in the diagram above, the image of o in H' (K, F")[r]
generates a subgroup of order 7/, by the lower exact sequence of the dia-
gram above (recall that ' is the smallest positive integer such that o €
0 (F'(K)/rF'(K))). Thus, from the same diagram, we see that o, viewed
as an element of H!(K, E' N F’), maps to the trivial element of H!(K, E')
but a nontrivial element ¢’ of H!(K, F') of order . Following a similar
situation in [Maz99], considering the exactness of

HYK,E'nNnF)—HYK,E')® H'(K,F)—H (K,.J'),

which is part of the long exact sequence associated to (10), we see that
the element (0,0’) in the middle group dies in the rightmost group, since
it arises from the element o in the leftmost group. Thus o/ € H(K, F’) dies
in H'(K, J'), and thus is a nontrivial element of order ' of ker(H' (K, F')—H'(K, J')).
Hence 7" divides the second factor in (9).
Thus r/r’" divides the first factor in (9), and 7’ divides the second factor
in (9), and so r divides the product in (9), as was to be shown.
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