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Let N be a prime and let A be a quotient of J0(N) over Q associated to a newform

such that the special L-value of A (at s = 1) is non-zero. Suppose that the algebraic

part of the special L-value of A is divisible by an odd prime q such that q does not
divide the numerator of N−1

12
. Then the Birch and Swinnerton-Dyer conjecture predicts

that the q-adic valuations of the algebraic part of the special L-value of A and of the

order of the Shafarevich-Tate group are both positive even numbers. Under a certain
mod q non-vanishing hypothesis on special L-values of twists of A, we show that the

q-adic valuations of the algebraic part of the special L-value of A and of the Birch and

Swinnerton-Dyer conjectural order of the Shafarevich-Tate group of A are both positive
even numbers. We also give a formula for the algebraic part of the special L-value of A

over quadratic imaginary fields K in terms of the free abelian group on isomorphism
classes of supersingular elliptic curves in characteristic N (equivalently, over conjugacy

classes of maximal orders in the definite quaternion algebra over Q ramified at N and∞)

which shows that this algebraic part is a perfect square up to powers of the prime two
and of primes dividing the discriminant of K. Finally, for an optimal elliptic curve E, we
give a formula for the special L-value of the twist E−D of E by a negative fundamental

discriminant −D, which shows that this special L-value is an integer up to a power of 2,
under some hypotheses. In view of the second part of the Birch and Swinnerton-Dyer

conjecture, this leads us to the surprising conjecture that the square of the order of the

torsion subgroup of E−D divides the product of the order of the Shafarevich-Tate group
of E−D and the orders of the arithmetic component groups of E−D, under certain mild
hypotheses.

Keywords: Elliptic curve; Abelian variety; Quadratic twist; Special L-value; Shafarevich-
Tate group.
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1. Introduction

Let A be an abelian variety over a number field F , and let L(A/F, s) denote the
associated L-function, which we assume is defined over all of C (this will be true in
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the cases we are interested in). Let Ω(A/F ) denote the quantity CA,∞ in [Lan91,
§ III.5]; it is the “archimedian volume” of A over embeddings of F in R and C
(e.g., if F = Q, then it is the volume of A(R) computed using a generator for the
highest exterior power of the group of invariant differentials on the Néron model
of A; the only other case we shall need is when F is a quadratic imaginary field,
which is discussed at the beginning of Section 4). Let Mfin denote the set of finite
places of F . Let A denote the Néron model of A over the ring of integers of F and
let A0 denote the largest open subgroup scheme of A in which all the fibers are
connected. If v ∈Mfin, then let Fv denote the associated residue class field and let
cv(A/F ) = [AFv

(Fv) : A0
Fv

(Fv)], the orders of the arithmetic component groups.
Let X(A/F ) denote the Shafarevich-Tate group of A over F . If F = Q, then we
will often drop the symbol “/F” in the notation (thus X(A/Q) will be denoted
X(A), etc.). If B is an abelian variety over F , then we denote by B∨ the dual
abelian variety of B, and by B(F )tor the torsion subgroup of B(F ). Suppose that
L(A/F, 1) 6= 0. Then the second part of the Birch and Swinnerton-Dyer conjecture
says the following (see [Lan91, § III.5]):

Conjecture 1.1 (Birch and Swinnerton-Dyer).

L(A/F, 1)
Ω(A/F )

=
|X(A/F )| ·

∏
v∈Mfin

cv(A/F )

|A(F )tor| · |A∨(F )tor|
. (1.1)

We denote by |X(A/F )|an the value of |X(A/F )| predicted by the conjecture
above, and call it the analytic order of X(A/F ). Thus

|X(A/F )|an =
L(A/F, 1)
Ω(A/F )

· |A(F )tor| · |A∨(F )tor|∏
v∈Mfin

cv(A/F )
.

We also call the ratio L(A/F,1)
Ω(A/F ) , the algebraic part of the special L-value of Af over F ;

in the contexts where we shall use this, it is known that the ratio is a rational number
(and hence an algebraic number).

If N is a positive integer, then let X0(N) denote the modular curve over Q
associated to Γ0(N), and let J0(N) be its Jacobian. Let T denote the subring of
endomorphisms of J0(N) generated by the Hecke operators (usually denoted T` for
` -N and Up for p |N). If f is a newform of weight 2 on Γ0(N), then let If = AnnTf

and let Af denote the quotient abelian variety J0(N)/IfJ0(N) over Q. We also
denote by L(f, s) the L-function associated to f and by L(Af , s) the L-function
associated to Af . It is known that L(Af ,1)

Ω(Af ) is a rational number.
Now fix a newform f of weight 2 on Γ0(N) such that L(Af , 1) 6= 0. Then

by [KL89], Af (Q) has rank zero and X(Af ) is finite. Thus the second part of the
Birch and Swinnerton-Dyer conjecture becomes:

Conjecture 1.2 (Birch and Swinnerton-Dyer).

L(Af , 1)
Ω(Af )

=
|X(Af )| ·

∏
p|N cp(Af )

|Af (Q)| · |A∨f (Q)|
, (1.2)
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Recall that an integer is said to be a fundamental discriminant if it is the dis-
criminant of a quadratic field. The results of this paper concern the algebraic parts
of the special L-values of Af over Q, of Af over quadratic imaginary fields, and of
twists of Af by negative fundamental discriminants (over Q). In Section 2, when
Af is an elliptic curve, we give a formula for the special L-value of the twist of Af

by a negative fundamental discriminant, which shows that this special L-value is
an integer, under some hypotheses. This leads us to the surprising conjecture that
for such twists, the square of the order of the torsion subgroup divides the product
of the order of the Shafarevich-Tate group and the orders of the arithmetic com-
ponent groups, under certain mild hypotheses. In Section 3, under a certain mod q

non-vanishing hypothesis on special L-values of twists of Af , we show that when N
is prime, for certain odd primes q that divide the algebraic part of the special L-
value of Af over Q, the q-adic valuations of the algebraic part of the special L-value
of Af and of the Birch and Swinnerton-Dyer conjectural order of the Shafarevich-
Tate group of Af are both positive even numbers, in conformity with what the
second part of the Birch and Swinnerton-Dyer conjecture predicts. In Section 4, for
N prime, we give a formula for the algebraic part of the special L-value of Af over
quadratic imaginary fields K in terms of the free abelian group on isomorphism
classes of supersingular elliptic curves in characteristic N (equivalently over conju-
gacy classes of maximal orders in the definite quaternion algebra over Q ramified
at N and ∞) which shows that this algebraic part is a perfect square away from
the prime two and the primes dividing the discriminant of K. In Section 5, we give
the proofs of two theorems mentioned in Sections 3 and 4. Finally, in Section 6,
we we give a formula for the determinant of the “complex period matrix” of an
abelian variety, which is needed in the proof of the main theorem of Section 4. All
the sections except Section 5 may be read independently of each other, although
there is some cross referencing.

We now introduce some notation that will be used in various sections of this
article. If 〈 , 〉 : M ×M ′→C, is a pairing between two Z-modules M and M ′, each
of the same rank m, and {α1, . . . , αm} and {β1, . . . , βm} are bases of M and M ′

(respectively), then by disc(M × M ′→C), we mean det(〈αi, βj〉). Up to a sign,
disc(M ×M ′→C) is independent of the choices of bases made in its definition, and
in the rest of this paper, disc(M ×M ′→C) will be well defined only up to a sign
(this ambiguity will not matter for our main results). We have a pairing

H1(X0(N),Z)⊗C× S2(Γ0(N),C)→C (1.3)

given by (γ, g) 7→ 〈γ, g〉 =
∫

γ
2πig(z)dz and extended C-linearly. At various points

in this article, we will consider pairings between two Z-modules; unless otherwise
stated, each such pairing is obtained in a natural way from (1.3). We have an
involution induced by complex conjugation on H1(Af ,Z). Let H1(Af ,Z)+ and
H1(Af ,Z)− denote the subgroups of elements of H1(Af ,Z) on which the invo-
lution acts as 1 and −1 respectively. Let Sf = S2(Γ0(N),Z)[If ], let Ω+

Af
=

disc(H1(Af ,Z)+ × Sf→C), and let Ω−
Af

= disc(H1(Af ,Z)− × Sf→C). In each sec-
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tion below, we will continue to use the notation introduced in this section, unless
mentioned otherwise.

2. Special L-values of twists of elliptic curves

In this section, we give a formula for the special L-value of the twist of an optimal
elliptic curve by a negative fundamental discriminant, which shows that this special
L-value is an integer up to a power of 2, under certain hypotheses. This has some
surprising implications from the point of view of the Birch and Swinnerton-Dyer
conjecture, as we shall discuss.

We now recall some definitions for an elliptic curve A defined over Q. If d is a
square free integer, then Ad denotes the twist of A by d. Thus if y2 = x3 + ax+ b

with a, b ∈ Q is a Weierstrass equation for A, then y2 = x3 + d2ax + d3b is a
Weierstrass equation for Ad. If −D is a negative fundamental discriminant, we
shall often consider the following hypothesis on (A,−D):
(**) −D is coprime to the discriminant of some Weierstrass equation y2 = x3 +
Ax+B for E with A,B ∈ Z.

Note that for every elliptic curve over Q, there is a Weierstrass equation
y2 = x3 + Ax + B with A,B ∈ Z. If A is an elliptic curve over Q, then let ωA

denote an invariant differential on a global minimal Weierstrass model of A, which
is unique upto sign. Now assume that A is an optimal elliptic curve, i.e., it is Af

for some newform f of weight 2 on Γ0(N) for some N . Let π : X0(N)→A denote
the associated parametrization. Then the space of pullbacks of differentials on A

to X0(N) is spanned by the differential 2πif(z)dz; let ωf be the differential on A

whose pullback is precisely 2πif(z)dz. Then ωA = cωf for some rational number cA,
which is called the Manin constant of A.

Lemma 2.1. Let E be an optimal elliptic curve over Q and let −D be a negative
fundamental discriminant such that (E,−D) satisfies hypothesis (**). Then up to
a sign,

Ω(E−D) = cE · c∞(E−D) · Ω−
E /
√
−D ,

where c∞(E−D) is the number of connected components of E−D(R).

Proof. By hypothesis (**), there is a Weierstrass equation y2 = x3 +Ax+B for E
with A,B ∈ Z, such that −D is coprime to the discriminant of this equation. Denote
this equation by (a). If (x) denotes a Weierstrass equation for an elliptic curve,
then we denote the associated discriminant by ∆(x) and the associated invariant
differential by ω(x). Replacing x by x/(

√
−D)

2
and y by y/(

√
−D)

3
, we get the

Weierstrass equation y2 = x3 +D2Ax−D3B for E−D (in fact, this transformation
gives an isomorphism of E and E−D over Q(

√
−D)); denote this equation by (b).

Then by [Sil92, Table III.1.2], ∆(b) = D6∆(a) and

ω(b) = ω(a)/(
√
−D). (2.1)
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Since D is squarefree and coprime to ∆(a), if p is a prime that divides D, then
ordp(∆(a)) = 0 < 12, and ordp(∆(b)) = ordp(D6∆(a)) = 6 < 12. Thus by [Sil92,
Rmk. VII.1.1], equations (a) and (b) are both minimal at the primes dividing D.
Also, if p is a prime that does not divide D, then the coefficients of (a) and (b) have
the same order at p. Thus, following the proof of Prop. VIII.8.2 in [Sil92], there is a
transformation x = u2x′+r, y = u3y′+u2sx′+t for some integers u, r, s and t, with
u 6= 0, which converts both equations (a) and (b) to equations that are minimal
at all primes. Denote these equations by (c) and (d) respectively; these are then
global minimal Weierstrass equations for E and E−D respectively. Hence ωE = ω(c)
and ωE−D

= ω(d). By [Sil92, p. 49], ω(c) = uω(a) and ω(d) = uω(b). Using (2.1),
ω(d) = uω(b) = uω(a)/(

√
−D) = ω(c)/(

√
−D).

Also, equation (b) was obtained from equation (a) by replacing x by x/(
√
−D)

2

and y by y/(
√
−D)

3
. Thus if (x, y) is a point on (b), then the corresponding

point on (a) is given by (x/(
√
−D)

2
, y/(

√
−D)

3
). Since the transformation used

to go from (b) to (d) was the same as the one used to go from (a) to (c), we
see that again, if (x, y) is a point on (d), then the corresponding point on (c) is
given by (x/(

√
−D)

2
, y/(

√
−D)

3
). Denote this map from points on (b) to points

on (a) by T and let σ denote complex conjugation. Then if P = (x, y) is a
point on (d) that is fixed by complex conjugation, i.e. σ(x, y) = (x, y), then
σ(T (P )) = σ(x/(

√
−D)

2
, y/(

√
−D)

3
) = (x/(

√
−D)

2
,−y/(

√
−D)

3
) = −T (P ).

From this we see that if γ ∈ H1(E−D,Z) is a generator, then T (γ) ∈ H1(E,Z)−. It
is easy to see that T is invertible, and so T (γ) is a generator of H1(E,Z)−.

Thus Ω−
E =

∫
T (γ)

ωf up to a sign, and using the change of variables given
by the transformation T , we see that

∫
γ
ωE−D

=
∫

T (γ)
ωE/(

√
−D). Also, recall

that ωE = cEωf . From the discussion above, we see that up to a sign, Ω(E−D) =
c∞(E−D)·

∫
γ
ωE−D

= c∞(E−D)·
∫

T (γ)
ωE/(

√
−D) = c∞(E−D)·cE ·

∫
T (γ)

ωf/(
√
−D) =

c∞(E−D) · cE · Ω−
E /
√
−D, as was to be shown.

Let N be a positive integer and let f be a newform of weight 2 on Γ0(N). Let
−D be a negative fundamental discriminant that is coprime to N and let εD = (−D

· )
denote the quadratic character associated to−D. If f(q) =

∑
n>0 anq

n is the Fourier
expansion of f , then the twist of f by εD, denoted f ⊗ εD, is the modular form
whose Fourier expansion is

∑
n>0 εD(n)anq

n. It is in fact a newform in S2(ND2, ε2D)
(considering that D is coprime to N ; see, e.g., p. 221 and p. 228 of [AL78] and the
references in loc. cit.). Just as we associated an abelian variety Af to f , one can
associate to f ⊗ εD an abelian variety quotient Af⊗εD

of J1(ND2), and moreover, if
f1, . . . , fd are the Galois conjugates of f , then L(Af⊗εD

, 1) =
∏

i L(fi ⊗ εD, 1) (see,
e.g. p. 89 and p. 95 of [Roh97]).

Proposition 2.2. Suppose f has integer Fourier coefficients, and let E denote the
associated optimal elliptic curve quotient of J0(N) over Q. Suppose that (E,−D)
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satisfies hypothesis (**) mentioned at the beginning of this section. Then

L(E−D, 1)
Ω(E−D)

=
L(Af⊗εD

, 1)
cE · c∞(E−D) · Ω−

Af
/
√
−D

,

where recall that c∞(E−D) is the number of connected components of E−D(R), cE

is the Manin constant of E, and Ω−
Af

is as defined at the end of Section 1. In
particular, if N is square free or if cE = 1 (as is conjectured), then

L(Af⊗εD
, 1)

Ω−
Af
/
√
−D

=
L(E−D, 1)
Ω(E−D)

,

up to a power of 2.

Proof. The first statement follows from Lemma 2.1 above, considering that
L(E−D, 1) = L(f ⊗ εD, 1) = L(Af⊗εD

, 1). The second statement follows from the
first, considering that c∞(E−D) is a power of 2, and if N is squarefree, then cE is a
power of 2 as well (by [Maz78, Cor. 4.1]).

The modular symbol
∑

b mod D
εD(b){− b

D ,∞} is an element of H1(X0(N),Z)−

by [Reb06, Lemma 5.2] (see also [Man71, §9.8–9.9]), and will be denoted by eD.
Let π denote the quotient map J0(N)→Af , and let π∗ denote the induced map
H1(J0(N)(C),Q)→H1(Af (C),Q). Let d = dimAf .

Proposition 2.3. Assume that L(Af⊗εD
, 1) 6= 0. Then up to a power of 2,

L(Af⊗εD
, 1)

Ω−
Af
/(−D)d/2

= |π∗(H1(X0(N),Z)−) : π∗(TeD)| .

Proof. The proof is very similar to the proof of Theorem 2.1 in [Aga07]. The main
thing to note is that if f1, . . . , fd are the Galois conjugates of f , then for i = 1, . . . , d,
we have L(fi ⊗ εD, 1) = 〈eD,fi〉√

−D
(see, e.g., [Reb06, p. 254] or [Man71, Thm 9.9]),

and so L(Af⊗εD
, 1) =

∏
i L(fi ⊗ εD, 1) =

∏
i
〈eD,fi〉√

−D
. Also, up to a power of 2,

π∗(H1(X0(N),Z)−) = H1(Af ,Z)−. Hence, up to a power of 2,

L(Af⊗εD
, 1)

Ω−
Af
/(−D)d/2

=
∏

i〈eD, fi〉
disc(π∗(H1(X0(N),Z)−)× Sf→C)

=
∏

i〈eD, fi〉
disc(π∗(TeD)× Sf→C)

· |π∗(H1(X0(N),Z)−) : π∗(TeD)|.

One can see in a manner similar to the proof of formula (6) in the proof of
Theorem 2.1 in [Aga07] that the first factor above is 1, as we explain next. The
proposition then follows from the claim in the previous sentence.

There is a perfect pairing

T× S2(Γ0(N),Z)→Z
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which associates to (T, f) the first Fourier coefficient a1(f | T ) of the modular
form f |T (see [Rib83, (2.2)]); this induces a pairing

ψ : T/If × Sf→Z, (2.2)

which is also perfect (e.g., see [Aga07, Lemma 2.2]).
Claim: The map T→TeD given by t 7→ teD induces an isomorphism T/If

∼=−→
TeD/IfeD.
Proof: It is clear that the map T→TeD/IfeD given by t 7→ teD is surjective. All
we have to show is that the kernel of this map is If . It is clear that the kernel
contains If . Conversely, if t is in the kernel, then teD ∈ IfeD; let i ∈ If be such that
teD = ieD. Then (t− i)eD = 0, and thus

∫
(t−i)eD

ωf = 0, i.e.,
∫

eD
ω(t−i)f = 0. If the

eigenvalue of f under (t − i) is λ, then this means λ · L(f ⊗ εD, 1) = 0, i.e., λ = 0
(since L(f ⊗ εD, 1) 6= 0, considering that L(Af⊗εD

, 1) 6= 0). Thus (t − i) ∈ If , i.e.,
t ∈ If . This proves the claim.

We continue the proof of the theorem. In what follows, i, j, k, and ` are indices
running from 1 to d. Let {gk} be a Z-basis of Sf and let {tj} be the corresponding
dual basis of T/If under the perfect pairing ψ in (2.2) above. Then by the claim
above, {tjeD} is a Z-basis for TeD/IfeD. Now gk =

∑
k akifi for some {aki ∈ C}.

Let A be the matrix having (k, i)-th entry aki, and let (a−1)i` denote the (i, `)-th
element of the inverse of A. Then

disc(TeD/IfeD × Sf→C)
= det{〈tjeD, gk〉} = det{〈eD, gk | tj〉} = det{〈eD, (

∑
i akifi) | tj〉}

= det{〈eD,
∑

i akia1(fi | tj)fi〉} (since fi’s are eigenvectors)
= det{〈eD,

∑
i aki

∑
`(a

−1)i`a1(g` | tj)fi〉} (using fi =
∑

`(a
−1)i`g`)

= det{〈eD,
∑

i aki(a−1)ijfi〉} (using a1(g` | tj) = δ`j)
= det{

∑
i aki(a−1)ij〈eD, fi〉} = det{

∑
i aki〈eD, fi〉(a−1)ij}

= det(A∆A−1) (where ∆ = diag(〈eD, fi〉))
= det(∆) =

∏
i〈eD, fi〉.

This shows what we wanted and finishes the proof of the proposition.

Corollary 2.4. Let E be an optimal elliptic curve over Q and let −D be a negative
fundamental discriminant such that (E,−D) satisfies hypothesis (**) mentioned at
the beginning of this section. Assume either that the Manin constant of E is one
(as conjectured) or that N is squarefree. Then

L(E−D, 1)
Ω(E−D)

∈ Z[1/2].

Proof. This follows from Propositions 2.2 and 2.3.

In view of the Birch and Swinnerton-Dyer conjecture (Conjecture 1.2 above)
and the conjecture that the Manin constant is one, the corollary above suggests the
following conjecture:
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Table 1.

E −D |E−D(Q)tor|
∏

p cp(E−D) |X(E−D)an|
14a1 -3 6 36 1
21a1 -7 4 8 1
27a1 -3 3 1 1
105a1 -11 2 2 4

Conjecture 2.5. Let E be an optimal elliptic curve over Q of conductor N

and let −D be a negative fundamental discriminant such that (E,−D) satisfies
hypothesis (**) mentioned at the beginning of this section. Recall that E−D de-
notes the twist of E by −D. Suppose L(E−D, 1) 6= 0. Then |E−D(Q)|2 divides
|X(E−D)| ·

∏
p|N cp(E−D), up to a power of 2.

Using the mathematical software sage, with its inbuilt Cremona’s database for
all elliptic curves of conductor up to 130000, we verified the conjecture above for all
triples (N,E,D) such that N and D are positive integers with ND2 < 130000, and
E is an optimal elliptic curve of conductor N . In fact, we found that even if replace
the hypothesis (**) with the potentially weaker hypothesis that gcd(N,D) = 1, the
conclusion of the conjecture above was true in all examples, even at the prime 2
(i.e., not just up to a power of 2). We also found that in all these examples, the
odd part of |E−D(Q)|2 divides

∏
p|N cp(E−D), and that if −D 6= −3, then |E−D(Q)|

is a power of 2. Table 1 below shows some interesting examples. The example of
E = 105a1 shows that |E−D(Q)|2 does not divide

∏
p|N cp(E−D) in general (but

it does divide |X(E−D)| ·
∏

p|N cp(E−D)). Also, if −D = −3, it is not true that
|E−D(Q)| is a power of 2, as the example of E = 14a1 shows. If we relax the
assumption that gcd(N,D) = 1, then it is no longer true that |E−D(Q)|2 divides
|X(E−D)| ·

∏
p|N cp(E−D), as the examples E = 21a1 and E = 27a1 show.

3. Special L-values over Q

We assume in this section that N is prime. Let f be a newform of weight 2 on Γ0(N),
and as before let Af denote the associated newform quotient of J0(N) over Q. Let
q be an odd prime that does not divide the numerator of N−1

12 but divides L(Af ,1)
Ω(Af ) .

Note that the denominator of L(Af ,1)
Ω(Af ) divides the numerator of N−1

12 (e.g., by [AS05,
Prop. 4.6] and the fact that the order of the cusp (0) − (∞) ∈ J0(N)(C) is the
numerator of N−1

12 when N is prime), and so it makes sense to talk about whether
q divides L(Af ,1)

Ω(Af ) or not. In this section, we show that under a certain mod q non-
vanishing hypothesis on special L-values of twists of Af , the q-adic valuations of
the algebraic part of the special L-value of Af and of the Birch and Swinnerton-
Dyer conjectural order of the Shafarevich-Tate group of Af are both positive even
numbers, in conformity with what the second part of the Birch and Swinnerton-Dyer
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conjecture predicts.

Proposition 3.1. Let q be as above. Then q divides |X(Af )|an. If the Birch and

Swinnerton-Dyer conjecture (1.2) is true, then ordq

(
L(Af ,1)
Ω(Af )

)
and ordq

(
|X(Af )|

)
are both positive even numbers.

Proof. By [Eme03, Theorem B] (and considering that the order of the cuspi-
dal subgroup of J0(N) is the numerator of N−1

12 when N is prime), q does not
divide

∏
p|N cp(Af ) or |Af (Q)| · |A∨f (Q)|. Thus if q divides L(Af ,1)

Ω(Af ) then q di-
vides |X(E)|an. Now assume the Birch and Swinnerton-Dyer conjecture (1.2), so
that q divides |X(E)|. As mentioned towards the end of §7.3 in [DSW03], if A∨f [q]
is irreducible for all maximal ideals q of T with residue field of characteristic q,
then the q-primary part of X(A∨f ) (and hence that of X(Af )) has order a per-
fect square. In our case, this irreducibility holds by [Maz77, Prop. 14.2], and thus
ordq

(
|X(Af )|

)
is a positive even number. Moreover, as mentioned above, q does

not divide any of the quantities other than |X(Af )| on the right side of (1.2), and

hence we see that ordq

(
L(Af ,1)
Ω(Af )

)
is a positive even number.

In particular, by Proposition 3.1 and its proof, if an odd prime q divides L(Af ,1)
Ω(Af )

or |X(Af )|an, but does not divide the numerator of N−1
12 , then q2 (not just q) is

expected to divide L(Af ,1)
Ω(Af ) and |X(Af )|an.

Let −D be a negative fundamental discriminant, and as before, let εD = (−D
· )

denote the associated quadratic character. Suppose that D is coprime to N . Then
as mentioned earlier, f ⊗ εD is a newform in S2(ND2, ε2D). By a refinement of a
theorem Waldspurger (see [LR97]), there exist infinitely many prime-to-N discrim-
inants −D such that L(Af⊗εD

, 1) 6= 0. Suppose D is such that L(Af⊗εD
, 1) 6= 0.

By Proposition 2.3, the quantity L(Af⊗εD
,1)

Ω−Af
/(−D)d/2 is an integer up to a power of 2, so

it makes sense to ask if an odd prime divides it. Also, if Af is an elliptic curve and
(Af ,−D) satisfy hypothesis (**) mentioned at the beginning of Section 2, then by
Proposition 2.2, L(Af⊗εD

,1)

Ω−Af
/(−D)d/2 is the algebraic part of the special L-value of the twist

of Af by −D, up to a power of 2.

Theorem 3.2. Recall that the level N is assumed to be prime, and q is an odd
prime which does not divide the numerator of N−1

12 , but divides L(Af ,1)
Ω(Af ) . Assume

that q satisfies the following hypothesis:
(*) there exists a negative fundamental discriminant −D that is coprime to N such
that L(Af⊗εD

, 1) 6= 0 and q does not divide L(Af⊗εD
,1)

Ω−Af
/(−D)d/2 .

Then ordq

(
L(Af ,1)
Ω(Af )

)
and ordq

(
|X(Af )|an

)
are both positive and even.

We shall prove Theorem 3.2 in Section 5. Assuming hypothesis (*), in view of
Proposition 3.1, Theorem 3.2 provides theoretical evidence towards the Birch and
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Swinnerton-Dyer conjectural formula (1.2). We will say more about the hypothe-
sis (*) later in this section.

Proposition 3.3. Recall again that the level N is assumed to be prime. Suppose q
is an odd prime that does not divide the numerator of N−1

12 and there is a normalized
eigenform g ∈ S2(Γ0(N),C) such that L(Ag, 1) = 0 and f is congruent to g modulo
a prime ideal over q in the ring of integers of the number field generated by the
Fourier coefficients of f and g.
(i) If the first part of the Birch and Swinnerton-Dyer conjecture is true for Ag, then
q2 divides |X(Af )|.
(ii) Suppose q satisfies hypothesis (*) of Theorem 3.2. Then q2 divides L(Af ,1)

Ω(Af )

and the Birch and Swinnerton-Dyer conjectural value of |X(Af )|. In particular
L(Af ,1)
Ω(Af ) ≡ L(Ag,1)

Ω(Ag) mod q2.

Proof. If the first part of the Birch and Swinnerton-Dyer conjecture (on rank) is
true for Ag, then considering that L(Ag, 1) = 0, we see that Ag has positive Mordell-
Weil rank. Part (i) now follows from [Aga07, Thm 6.1]. By [Aga07, Prop. 1.5], the
hypotheses of the proposition imply that q divides L(Af , 1)/Ω(Af ). Thus part (ii)
follows from the Theorem above.

Subject to hypothesis (*), the proposition above shows some consistency between
the predictions of the two parts of the Birch and Swinnerton-Dyer conjecture. There
is a general philosophy that congruences between eigenforms should lead to con-
gruences between algebraic parts of the corresponding special L-values, and there
are theorems in this direction (see [Vat99] and the references therein for more in-
stances). However, these theorems prove congruences modulo primes, but not their
powers. To our knowledge, part (ii) of Proposition 3.3 above is the first result of a
form in which the algebraic parts of the special L-value are congruent modulo the
square of a congruence prime.

In the rest of this section, we give some heuristic and computational evidence
for why hypothesis (*) might always hold when Af is an elliptic curve, which we
denote by E. Suppose that (E,−D) satisfies the hypothesis (**) mentioned at the
beginning of Section 2. Then, by Proposition 2.2, L(Af⊗εD

,1)

Ω−Af
/(−D)d/2 is the special L-value

of the twisted elliptic curve E−D up to a power of 2.
As mentioned before, by [Eme03, Theorem B], q does not divide the orders of

the arithmetic component groups of E, and hence by [Pra08, Lem. 2.1], q does not
divide the orders of the arithmetic component groups of E−D either. Thus if one
assumes the second part of the Birch and Swinnerton-Dyer conjecture for E−D, then
the only way q can divide L(Af⊗εD

,1)

Ω−Af
/(−D)d/2 is if q divides the order of X(E−D).

Now there is no clear reason for q to divide the order of X(E−D) for every D.
Kolyvagin has asked whether for a given elliptic curve A and a prime q, there is
a twist of A such that q does not divide the order of the Shafarevich-Tate group
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of the twist (see Question A in [Pra08]). We are interested in the same question,
but with the added restrictions that the level N is prime, the special L-value of the
twist is nonzero, and that (E,−D) satisfies the hypothesis (**).

We now report on what numerical data we could gather regarding this question.
Since we do not know a general algorithm to compute the actual order of the
Shafarevich-Tate group of an elliptic curve, we shall instead consider the analytic
orders and assume the second part of the Birch and Swinnerton-Dyer conjecture to
pass from analytic orders of the Shafarevich-Tate groups to their actual orders.

Using the mathematical software sage, with its inbuilt Cremona’s database for
all elliptic curves of conductor up to 130000, we considered all tuples (N,E, p)
such that N is an integer less than 130000, E is an elliptic curve of conductor N
with |X(E)|an divisible by an odd prime, and p is an odd prime that divides
|X(E)|an. For each such tuple, we looked for a negative fundamental discriminant
−D such that L(E−D, 1) 6= 0, ND2 < 130000 (to stay within the range of Cremona’s
database), and D is coprime to the discriminant of a chosen Weierstrass equation
y2 = x3+Ax+B of E with A,B ∈ Z. If we insisted on N being prime, then we found
four tuples (N,E, p) as above; for two of them, we were able to find a D as above,
in both of which p did not divide |X(E−D)|an. If we allow N to be arbitrary, then
we found 357 tuples (N,E, p) as above, and for 103 of them, we were able to find
a D as above, among which in 101 cases, p did not divide |X(E−D)|an. Of course,
for the examples where we could not find a suitable D in the range of Cremona’s
tables, one may have to look beyond ND2 = 130000 to satisfy hypothesis (*).
Indeed, even for N as low as 681, which is the first level at which an elliptic curve
has the analytic order of the Shafarevich-Tate group divisible by an odd prime,
the number of negative fundamental discriminants −D such that gcd(N,D) = 1
and ND2 < 130000 is just 4. In any case, when we could find a D satisfying the
requirements above, it was often the case that p did not divide |X(E−D)|an. Thus
the data above does encourage the belief that hypothesis (*) always holds for elliptic
curves (even for non-prime levels). For more general newform quotients Af , we do
not know how to do computations (but see the remark at the end of Section 4).

As mentioned above, we have to assume the second part of the Birch and
Swinnerton-Dyer conjecture to pass from analytic orders of the Shafarevich-Tate
groups to their actual orders. The careful reader would have noticed that we want
to apply hypothesis (*) to give evidence for the second part of the Birch and
Swinnerton-Dyer conjecture, and at the same time we are assuming the conjec-
ture to give some credence to the hypothesis. While this may sound like circular
reasoning, the point is that the conjecture is being applied in different contexts, and
also our reasoning is not intended in any way to be a part of a proof.

One would of course hope that hypothesis (*) is proved independent of the
second part of the Birch and Swinnerton-Dyer conjecture. While it is known that
hypothesis (*) does hold for all but finitely many primes q (e.g., see [OS98, Cor. 1]),
it is not clear what that finite list of primes is. Also, in [BO03, p.167-168], one
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finds a criterion for how big q needs to be, but the period they use (cf. [Bru99, §5])
differs from the period we use by an unknown algebraic number (cf. the discussion
in [Koh85, Cor. 2], and [Pra08, Conj. 5.1]). Thus unfortunately the theoretical
results mentioned in this paragraph do not help us much regarding hypothesis (*).

4. Special L-values over quadratic imaginary fields

Let N be a positive integer. Let f be a newform of weight 2 on Γ0(N), and as
before let Af denote the associated newform quotient of J0(N) over Q. In this
section, when N is prime, we give a formula for the algebraic part of the special L-
value of Af over quadratic imaginary fields K in terms of the free abelian group on
isomorphism classes of supersingular elliptic curves in characteristic N (equivalently
over conjugacy classes of maximal orders in the definite quaternion algebra over Q
ramified at N and ∞) which shows that this algebraic part is a perfect square away
from the prime two and the primes dividing the discriminant of K.

We start by recalling the definition of the “archemedian volume” Ω(Af/K)
alluded to in the introduction. Let d = dimAf and let F be a number field. Let
ω1, . . . , ωd be a basis of H0(Af ,Ω1

Af /Q) associated to a Z-basis of S2(Γ0(N),Z)[If ].
Then ω1, . . . , ωd is also an F -basis of H0(Af ,Ω1

Af /F ). Let W denote the group of
invariant differentials on the Néron modelAO of Af overO, the ring of integers of F .
Then ∧dW = c(Af/F ) · ∧iωi for some fractional ideal c(Af/F ) of O (cf. [Lan91,
§ III.5]). We will call the ideal c(Af/F ) the Manin ideal of Af over F . If F = Q,
then the absolute value of a generator of the Manin ideal is just the Manin constant
of Af (as defined in [ARS06]) and is denoted cAf

. If Af is an elliptic curve, then this
definition of the Manin constant agrees with the one given in Section 2 for optimal
elliptic curves. The Manin constant cAf

is conjectured to be one; it is known that
cAf

is an integer, and if p is a prime such that p2 - 2N , then p does not divide cAf

(see [ARS06] for details).

Lemma 4.1. The Manin ideal c(Af/F ) is supported on the set of maximal ideals m

of O such that the residue characteristic of m divides either cAf
or the discriminant

of O.

Proof. Suppose m is a maximal ideal of O such that the residue characteristic `
of m divides neither cAf

nor the discriminant of O. By [BLR90, §7.2, Cor. 2], over
discrete valuation rings, the formation of Néron models is compatible with un-
ramified extensions. Thus, considering that ` is coprime to the discriminant of O,
H0(AO,ΩAO/O) ⊗O Om = H0(AOm ,ΩAOm/Om

) = H0(AZ`
,ΩAZ`

/Z`
) ⊗Z`

Om =
H0(AZ,ΩAZ/Z)⊗ZZ`⊗Z`

Om = H0(AZ,ΩAZ/Z)⊗ZOm. Thus, a Z-basis ω′1, . . . , ω
′
d

of H0(AZ,ΩAZ/Z) is a Om-basis of H0(AO,ΩAO/O) ⊗O Om. Since ` does not di-
vide cAf

, we see that (∧dω′i)⊗Z` = (∧dωi)⊗Z`. Hence (∧dω′i)⊗Om = (∧dωi)⊗Om.
In view of all this, it follows that c(Af/F )⊗O Om is trivial, and the lemma follows.

Let c1, . . . , c2d be a basis of H1(Af (C),Z). The complex period matrix of Af
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(with respect to the chosen basis) is the 2d× 2d matrix A = (
∫

ci
ωj ,

∫
ci
ωj). Recall

that K is a quadratic imaginary field; let −D be its discriminant. The “archimedean
volume” of Af over K is

Ω(Af/K) = |det(A)| ·NK
Q (c(Af/F ))/Dd/2 (4.1)

(this coincides with the definition of CA,∞ in [Lan91, § III.5]).
Let N be prime in the rest of this section. We next give a formula for the ratio

L(Af /K,1)
Ω(Af /K) , which is the left hand side of the Birch and Swinnerton-Dyer conjectural

formula (Conjecture 1.1) for Af over K.
Let {E0, E1, . . . , Eg} be a set of representatives for the isomorphism classes of

supersingular elliptic curves in characteristic N , where g is the genus of X0(N). We
denote the class of Ei by [Ei]. Let P denote the divisor group supported on the
[Ei] and let P0 denote the subgroup of divisors of degree 0. For i = 1, 2, . . . , g, let
Ri = End Ei. Each Ri is a maximal order in the definite quaternion algebra rami-
fied at N and ∞, which we denote by B and in fact, the Ri’s are representatives of
the conjugacy classes of maximal orders of B. Moreover, setting Ii = Hom(E0, Ei),
we see that the Ii are representatives for the isomorphism classes of right locally free
rank one right modules over R0. Let O−D denote the quadratic order of discrim-
inant −D, h(−D) the number of classes of O−D, u(−D) the order of O∗

−D/〈±1〉,
and hi(−D) the number of optimal embeddings of O−D in Ri modulo conjugation
by R∗

i . Following [Gro87], we define

χD =
1

2u(−D)

g∑
i=0

hi(−D)[Ei] ∈ P ⊗Q.

Let wi = |AutEi| = |R∗
i /〈±1〉|. Define the Eisenstein element in P ⊗ Q as aE =∑g

i=0
[Ei]
wi

. Let χ0
D = χD − 12

p−1 deg(eD)aE. Let n = numr(N−1
12 ); then nχ0

D ∈ P0.
Since the level N is prime, the Hecke algebra T is semi-simple, and hence we have
an isomorphism T⊗Q ∼= T/If⊗Q⊕B of T⊗Q-modules for some T⊗Q-module B.
Let π denote element of T⊗Q that is the projection on the first factor. We prove
the following in Section 5:

Theorem 4.2. Recall that the level N is prime. Let K be a quadratic imaginary
field with discriminant −D that is coprime to N . If L(Af/K, 1) 6= 0, then up to
powers of primes dividing 2D,

L(Af/K, 1)
Ω(Af/K)

=
| π(P0) : π(Tnχ0

D) |2

NK
Q (c(Af/K)) · n2

.

Moreover, L(Af /K,1)
Ω(Af /K) is a perfect square up to powers of primes dividing 2D.

This addresses the issue raised in [Reb06, p. 236] that as of the writing of loc.
cit., one did not have a way of expressing special L-values over K in terms of the
module P. Also, it may be possible to use the formula above for computations
using Brandt matrices (cf. [Koh]). Note that up to powers of primes dividing 2D,
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L(Af /K,1)
Ω(Af /K) equals L(Af ,1)

Ω(Af ) · L(Af⊗εD
,1)

Ω−Af
/(−D)d/2 (see formula (5.5) in Section 5). Thus if

the formula in Theorem 4.2 could be used for computations, then considering that
one already knows how to compute L(Af ,1)

Ω(Af ) (see [AS05, §4]), one could compute
L(Af⊗εD

,1)

Ω−Af
/(−D)d/2 systematically and check whether the hypothesis (*) of Theorem 3.2

holds in particular examples for odd primes q not dividing D.

5. Proofs of Theorems 3.2 and 4.2

In this section, we prove Theorems 3.2 and 4.2. We shall be using results
from [Reb06], and details of some of the facts that we use here routinely may
be found in loc. cit.

Let H denote the complex upper half plane, and let {0, i∞} denote the projec-
tion of the geodesic path from 0 to i∞ in H ∪ P1(Q) to X0(N)(C). We have an
isomorphism

H1(X0(N),Z)⊗R
∼=−→ HomC(H0(X0(N),Ω1),C),

obtained by integrating differentials along cycles. Let e be the element of
H1(X0(N),Z) ⊗ R that corresponds to the map ω 7→ −

∫
{0,i∞} ω under this

isomorphism. It is called the winding element. By the Manin-Drinfeld Theorem,
(see [Lan95, Chap. IV, Theorem 2.1] and [Man72]), e ∈ H1(X0(N),Z)⊗Q. Also,
since the complex conjugation involution on H1(X0(N),Z) is induced by the map
z 7→ −z on the complex upper half plane, we see that e is invariant under complex
conjugation. Thus e ∈ H1(X0(N),Z)+ ⊗Q. Let H+ and H− denote the subgroup
of elements of H1(X0(N),Z) on which the complex conjugation involution acts as 1
and −1 respectively.

Assume henceforth that N is prime (which is a hypothesis for the theorems that
we want to prove). Consider the T[1/2]-equivariant isomorphism

Φ : P0[1/2]⊗T[1/2] P0[1/2]→H+[1/2]⊗T[1/2] H
−[1/2] (5.1)

obtained from [Reb06, Prop. 4.6] (which says that both sides of (5.1) are isomorphic
to S2(Γ0(N),Z)[1/2], and whose proof relies on results of [Eme02]). By [Reb06,
Thm 0.2], we have ΦQ(χ0

D⊗TQ
χ0

D) = e⊗TQ
eD, where the subscript Q stands for

tensoring with Q (this follows essentially from [Gro87, Cor 11.6], along with its
generalization [Zha01, Thm 1.3.2]). Thus ΦQ induces an isomorphism

T[1/2](nχ0
D⊗T[1/2]nχ

0
D) ∼= T[1/2]ne⊗T[1/2]T[1/2]neD. (5.2)

Note that ne ∈ H+ by II.18.6 and II.9.7 of [Maz77].
Recall that since the level N is prime, the Hecke algebra T is semi-simple, and

hence we have an isomorphism T ⊗ Q ∼= T/If ⊗ Q ⊕ B of T ⊗ Q-modules for
some T ⊗ Q-module B. Recall also that π denotes the element of T ⊗ Q that is
the projection on the first factor. In this section, if X and Y are T-modules with
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Y ⊆ X, then we shall write
∣∣π(

X
Y

)∣∣ for | π(X) : π(Y ) |, which is an integer; we are
doing this so that the formulas do not look too terrible.

Proposition 5.1.∣∣∣∣π(
H+[1/2]
T[1/2]ne

)∣∣∣∣ · ∣∣∣∣π(
H−[1/2]

T[1/2]neD

)∣∣∣∣ =
∣∣∣∣π(

H+[1/2]⊗TH
−[1/2])

T[1/2]ne⊗TT[1/2]neD

)∣∣∣∣
Proof. By [Maz77, §15], if m is a Gorenstein maximal ideal of T with odd residue
characteristic, then H+

m and H−
m are free Tm-modules of of rank one. Since the level

is prime, the only non-Gorenstein ideals are the ones lying over 2, a prime that we
are systematically inverting anyway.

Let m be a maximal ideal of T with odd residue characteristic. Let x be a
generator of H+

m as a free Tm-module, and let y be a generator of H−
m as a free

Tm-module. Then there exists t1 ∈ Tm such that ne = t1x and t2 ∈ Tm such that
neD = t2y. We have∣∣∣∣ π(H+

m⊗TmH
−
m )

π(Tmne⊗TmTmneD)

∣∣∣∣ =
∣∣∣∣ π(Tmx⊗TmTmy)
π(Tmt1x⊗TmTmt2y)

∣∣∣∣
=

∣∣∣∣ π(Tm(x⊗Tmy))
t1t2π(Tm(x⊗Tmy))

∣∣∣∣
=

∣∣∣∣ π(Tm)
t2t1π(Tm)

∣∣∣∣
=

∣∣∣∣ π(Tm)
t1π(Tm)

∣∣∣∣ · ∣∣∣∣ π(t1Tm)
t2π(t1Tm)

∣∣∣∣.
Claim: ∣∣∣∣ π(t1Tm)

t2π(t1Tm)

∣∣∣∣ =
∣∣∣∣ π(Tm)
t2π(Tm)

∣∣∣∣ .

Proof. Consider the map ψ : π(Tm)→π(t1Tm)/t2π(t1Tm) given as follows: if t ∈
Tm, then π(t) 7→ π(t1t). If π(t) is in the kernel of ψ, then π(t1t) = π(t2t1t′) for
some t′ ∈ Tm. Then π(t1(t − t2t

′)) = 0, and since π(t1) 6= 0 (as L(Af , 1) 6= 0), we
have π(t) = π(t2t′). Thus the kernel of ψ is t2π(Tm), which proves the lemma.

Using the claim and the series of equalities above, we have

∣∣∣∣ π(H+
m⊗TmH

−
m )

π(Tmne⊗TmTmneD)

∣∣∣∣ =
∣∣∣∣ π(Tm)
t1π(Tm)

∣∣∣∣ · ∣∣∣∣ π(Tm)
t2π(Tm)

∣∣∣∣
=

∣∣∣∣ π(Tmx)
t1π(Tmx)

∣∣∣∣ · ∣∣∣∣ π(Tmy)
t2π(Tmy)

∣∣∣∣
=

∣∣∣∣ π(H+
m )

π(Tmne)

∣∣∣∣ · ∣∣∣∣ π(H−
m )

π(TmneD)

∣∣∣∣
=

∣∣∣∣π(
H+

m

Tmne

)∣∣∣∣ · ∣∣∣∣π(
H−

m

TmneD

)∣∣∣∣ .
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Since this is true for every m with odd residue characteristic, we get the state-
ment in the proposition.

Proposition 5.2.∣∣∣∣π( P0[1/2]⊗T[1/2]P0[1/2]
T[1/2](nχ0

D⊗T[1/2]nχ0
D)

)∣∣∣∣ =
∣∣∣∣π(

P0[1/2]
T[1/2]nχ0

D

)∣∣∣∣2.
Proof. By [Eme02, Thm 0.5], if m is a Gorenstein maximal ideal of T, then P0

m

is a free Tm-module of rank one; let x be a generator. Then nχ0
D = tx for some

t ∈ Tm. Hence in a manner similar to the steps in the proof of Proposition 5.1, we
have ∣∣∣∣π( P0

m⊗T[1/2]P0
m

Tm(nχ0
D⊗T[1/2]nχ0

D)

)∣∣∣∣ =
∣∣∣∣π(

Tmx⊗T[1/2]Tmx

Tm(tx⊗T[1/2]tx)

)∣∣∣∣ =
∣∣∣∣π(

Tm

t2Tm

)∣∣∣∣
=

∣∣∣∣π(
Tm

tTm

)∣∣∣∣2 =
∣∣∣∣π(

P0
m

Tmnχ0
D

)∣∣∣∣2.
Since this holds for every maximal ideal m of odd residue characteristic, we get the
proposition.

By formula (5.1), formula (5.2), Proposition 5.1, and Proposition 5.2, we have∣∣∣∣π(
H+[1/2]
T[1/2]ne

)∣∣∣∣ · ∣∣∣∣π(
H−[1/2]

T[1/2]neD

)∣∣∣∣ =
∣∣∣∣π(

P0[1/2]
T[1/2]nχ0

D

)∣∣∣∣2 (5.3)

Let Ω+
Af

= disc(H1(Af ,Z)+ × Sf→C); it differs from Ω(Af ) by a power of 2
(by [Aga07, Lemma 2.4]). By the proof of Theorem 2.1 of [Aga07], we have∣∣∣∣π(

H+

T(ne)

)∣∣∣∣ = n · L(Af , 1)
Ω+

Af

.

Using this and Proposition 2.3, equation (5.3) says that up to a power of 2,

L(Af , 1)
Ω+

Af

· L(Af⊗εD
, 1)

Ω−
Af
/(−D)d/2

=
1
n2

·
∣∣∣∣π(

P0[1/2]
T[1/2]nχ0

D

)∣∣∣∣2. (5.4)

Proof of Theorem 4.2. We have L(Af/K, s) = L(Af , s) · L(Af⊗εD
, s), and by

Corollary 6.2 in Section 6, we have Ω(Af/K) = NK
Q (c(Af/K)) ·Ω+

Af
·Ω−

Af
/(−D)d/2,

up to a sign. Thus we have

L(Af/K, 1)
Ω(Af/K)

=
1

NK
Q (c(Af/K))

· L(Af , 1)
Ω+

Af

· L(Af⊗εD
, 1)

Ω−
Af
/(−D)d/2/(−D)d/2

, (5.5)

up to a sign. The first claim of Theorem 4.2 now follows from (5.4). The second
claim follows from the first since NK

Q (c(Af/K)) is coprime to 2D by Lemma 4.1,
considering that by [Maz78, Cor. 4.1], cAf

is a power of 2 since N is prime.
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Proof of Theorem 3.2. If an odd prime q divides L(Af ,1)
Ω(Af ) (which recall differs

from L(Af ,1)

Ω+
Af

by a power of 2) and q does not divide L(Af⊗εD
,1)

Ω−Af
/(−D)d/2 , then by (5.4),

ordq

(
L(Af ,1)
Ω(Af )

)
is even (and positive). By [Eme03, Theorem B], we have |Af (Q)| =

|A∨f (Q)| and this order divides the numerator of N−1
12 . Thus if q does not divide

the numerator of N−1
12 , then from (1.2), ordq

(
|X(Af )|an

)
is positive and even. This

proves Theorem 3.2.

6. Appendix: period matrices

In this section, we give a formula for the determinant of the “complex period matrix”
of an abelian variety. The result is probably well known, but we could not find a
suitable reference.

Let Y be an abelian variety over Q of dimension d. Let ω1, . . . , ωd be a basis
of H0(Y,Ω1

Y/Q). Let c1, . . . , c2d be a basis of H1(Y (C),Z). We define the associated
complex period matrix of Y as the 2d × 2d matrix A = (

∫
ci
ωj ,

∫
ci
ωj); this matrix

depends on the choices of the bases made above.
We have an action of complex conjugation c on Y (C), and hence on

H1(Y (C),Z). Let H1(Y (C),Z)+ denote the subgroup of elements of H1(Y (C),Z)
that are fixed by complex conjugation, and let H1(Y (C),Z)− denote the subgroup
of elements x of H1(Y (C),Z) such that c(x) = −x. Let γ1, . . . , γd be a basis
of H1(Y (C),Z)+, and let γ′1, . . . , γ

′
d be a basis of H1(Y (C),Z)−. Let B denote

the d × d matrix whose (i, j)-th entry is
∫

γi
ωj and let C denote the d × d matrix

whose (i, j)-th entry is
∫

γ′i
ωj .

Lemma 6.1. We have detA = detB · detC up to a sign and up to a power of 2.

Proof. Let A1,2 denote the d×d matrix whose (i, j)-th entry is
∫

γi
ωj , and let A2,2

denote the d× d matrix whose (i, j)-th entry is
∫

γ′i
ωj . Consider the 2d× 2d matrix

A′ =
[
B A1,2

C A2,2

]
Now the set {γ1, . . . , γd, γ

′
1, . . . , γ

′
d} generates a subgroup of H1(A(C),Z) of index

a power of 2, and thus up to a sign and up to a power of 2, we have

det(A) = det(A′) . (6.1)

Now if γ ∈ H1(A(C),Z), and γ denotes its complex conjugate, then for j = 1, . . . , d,
since ωj is Q-rational, we have

∫
γ
ωj =

∫
γ
ωj . In particular, if γ ∈ H1(A(C),Z)+,

then
∫

γ
ωj =

∫
γ
ωj , and if γ ∈ H1(A(C),Z)−, then

∫
γ
ωj = −

∫
γ
ωj . Thus we see

that A1,2 = B and A2,2 = −C. Thus

A′ =
[
B B

C −C

]
.
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From this, we see that det(A′) = −2 det(B) det(C). The lemma now follows
from (6.1).

We remark that the discussion above holds even if we replace Q by R through-
out.

Corollary 6.2. Let N be a positive integer. Let f be a newform of weight 2
on Γ0(N), and as before let Af denote the associated newform quotient
of J0(N) over Q. Recall that Ω+

Af
= disc(H1(Af ,Z)+ × Sf→C), and Ω−

Af
=

disc(H1(Af ,Z)− × Sf→C), where Sf = S2(Γ0(N),Z)[If ]. Let K be a quadratic
imaginary field of discriminant −D, and let Ω(Af/K) be the “complex period”
of Af over K as defined in formula (4.1) of Section 4. Then up to a sign,

Ω(Af/K) = NK
Q (c(Af/K)) · Ω+

Af
· Ω−

Af
/(−D)d/2,

where c(Af/K) is the Manin ideal of Af over F , as defined at the beginning of
Section 4.

Proof. Take Y = Af in the discussion at the beginning of this section, and take
ω1, . . . , ωd to be the differentials in H0(Af ,Ω1

Af /Q) corresponding to a basis of Sf .
Let the matrices A, B, and C be as above, for the choices made in the previous
sentence. Then by definition, Ω(Af/K) = |det(A)|/(−D)d/2, Ω+

Af
= det(B), and

Ω−
Af

= det(C).
Now if γ ∈ H1(A(C),Z), and γ denotes its complex conjugate, then for

j = 1, . . . , d, since ωj is Q-rational, we have
∫

γ
ωj =

∫
γ
ωj . In particular, if

γ ∈ H1(A(C),Z)+, then
∫

γ
ωj =

∫
γ
ωj , so

∫
γ
ωj is real. Hence all the entries

of the matrix B are real. Hence |det(B)| = det(B) up to a sign. Similarly, if
γ ∈ H1(A(C),Z)−, then

∫
γ
ωj = −

∫
γ
ωj , so

∫
γ
ωj is purely imaginary. Thus all

the entries of the matrix C are purely imaginary. Hence |det(C)| = (
√
−1)d det(C)

up to a sign.
Thus by Lemma 6.1 and the discussion in the two paragraphs above, we see

that up to a sign, Ω(Af/K) = |det(A)|/Dd/2 = |det(B)| · |det(C)|/Dd/2 = det(B) ·
det(C) · (

√
−1)d/Dd/2 = det(B) · det(C)/(−D)d/2 = Ω+

Af
·Ω−

Af
/(−D)d/2, as was to

be shown.
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