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Abstract

In variational data assimilation (VDA) for meteorological and /or oceanic models,
the assimilated fields are deduced by combining the model and the gradient of a
cost functional measuring discrepancy between model solution and observation, via
a first order optimality system.

However existence and uniqueness of the VDA problem along with convergence of
the algorithms for its implementation depend on the convexity of the cost function.

Properties of local convexity can be deduced by studying the Hessian of the
cost function in the vicinity of the optimum thus the necessity of second order
information to ensure a unique solution to the VDA problem.

In this paper we present a comprehensive review of issues related to second order
analysis of the problem of VDA along with many important issues closely connected
to it.

In particular we study issues of existence, uniqueness and regularization through
second order properties. We then focus on second order information related to statis-
tical properties and on issues related to preconditioning and optimization methods
and second order VDA analysis. Predictability and its relation to the structure of
the Hessian of the cost functional is then discussed along with issues of sensitivity
analysis in the presence of data being assimilated. Computational complexity issues
are also addressed and discussed.

Automatic differentiation issues related to second order information are also
discussed along with the computational complexity of deriving the second order
adjoint .

Finally an application aimed at illustrating the use of automatic differentiation
for deriving the second order adjoint as well as the Hessian/vector product applied
to minimizing a cost functional of a meteorological problem using the truncated-
Newton method is presented. Results verifying numerically the computational cost
of deriving the second order adjoint as well as results related to the spectrum of the
Hessian of the cost functional are displayed and discussed.



1 Introduction

Data assimilation can be described as the ensemble of techniques for retrieving geophysical
fields from different sources such as observations, governing equations, statistics, buoys,
..., ete.

Being heterogeneous in nature, quality and density these data sources have to be put
together to optimally retrieve (the meaning of “optimal” has to be precisely defined) the
geophysical fields. Due to its inherent operational tasks, meteorology has played an impor-
tant role in the development of data assimilation techniques. An ever increasing amount
of data and models are considered as an ensemble from which the optimal information
should be extracted.

Behind most of the classical methods used in meteorology such as: optimal interpola-
tion, variational methods, statistical estimation etc., there is a variational principle, i.e.
the retrieved fields are obtained through the minimization of some functional depending
on the various sources of information.

The retrieved fields are obtained trough some optimality condition which can be an
Euler or Euler-Lagrange condition if the regularity conditions are satisfied. Since these
conditions are first order conditions, it follows that they involve the first order derivatives
of the functional which is minimized. In this sense, data assimilation techniques are first
order methods.

But first order methods are only necessary conditions for optimality but not sufficient
ones. To obtain sufficient conditions we need to proceed one step further and to introduce
second order information.

By the same token, from the mathematical point of view sensitivity studies with
respect to some parameter can be obtained trough Gateaux derivatives with respect to
this parameter. Therefore if we seek the sensitivity of fields which have already been
defined trough some first order conditions we will have to proceed one order of derivation

further and in this sense our sensitivity studies require second order information.



The purpose of this review paper is to show how to obtain and how to use in an efficient
way second order information in data assimilation. In a first part we will show how the
second order derivative can be computed, primarily in a very general framework, then
illustrate it with some examples. Then we will show how this second order information
can be linked to the issues of uniqueness of a solution to the problem of data assimilation.
This will be shown to be not only a mathematical consideration but also rather a practical
issue whereby information can be extracted by studying second order information.

In a second part of the paper we will proceed to show how to derive sensitivity analysis
from models and data. The analysis of the impact of uncertainties in the model and in the
data provides essential links between purely deterministic methods (such as variational
data assimilation) and stochastic methods (Kalman filter type data). We will then proceed
to demonstrate how the link between these methods can be clearly understood trough use
of second order information.

Researchers in other disciplines have carried out pioneering work using second order
information. Work in seismology using second order information and applying it to obtain
accurate Hessian /vector products for truncated -Newton minimization was carried out by
Santosa and Symes(1988,1989) and by Symes (1990,1991,1993).

Reuther(1996) and Arian (1999) illustrated the importance of second order adjoint
analysis for optimal control and shape optimization for inviscid aerodynamics.

Second order information was tackled in automatic differentiation (AD) by Abate et
al.(1997), Giering and Kaminski (1998a, 1998b), Gay (1996) Hovland (1995), Griewank
and Corliss (1991), Griewank (1993) and Griewank (2000) to cite but a few.

Several AD packages such as TAMC of Giering allow calculation of the Hessian of the
cost functional.

Early work on second order information in meteorology includes Thacker (1989) fol-
lowed by work of Wang et al. (1992), Wang et al. (1993), Wang (1993). Wang et al.(1995)

and Wang et al. (1998) considered use of second order information for optimization pur-



poses namely to obtain truncated -Newton and Adjoint Newton algorithms using exact
Hessian/vector products. Application of these ideas was presented in Wang et al. (1997).

Kalnay et al.(2000) introduced an elegant and novel pseudo-inverse approach and
showed its connection to the adjoint Newton algorithm of Wang et al. (1997). (See
Kalnay et al. (2000), Pu and Kalnay (1999), Park and Kalnay (1999), Pu et al. (1997)).

Ngodock(1996) applied second order information in his doctoral thesis in conjunction
with sensitivity analysis in the presence of observations and applied it to the ocean circu-
lation. Le Dimet et al. (1997)presented the basic theory for second order adjoint analysis
related to sensitivity analysis.

The structure of the paper is as follows. Section 2 deals with the theory of the
second order adjoint method, both for time independent and time dependent models. The
methodology is briefly illustrated using the shallow water equations model.

Section 3 deals with the connection between sensitivity analysis and second order
information. Section 4 briefly presents the Kalnay et al. (2000) quasi-inverse method
and its connection with second order information. Issues related to second order Hessian
information in optimization theory are addressed in Section 5. Both unconstrained and
constrained minimization issues are discussed. Finally the use of accurate Hessian /vector
products to optimize the Truncated Newton method are presented along with the adjoint
Truncated-Newton method.

A method for approximating the Hessian of the cost function with respect to the
control variables proposed by Courtier et al. (1994), based on rank p approximation of
it and bearing similarity to approximation of the Hessian in quasi-Newton methods is
presented in Section 5.9.

Section 6 is dedicated to methods of obtaining the second order adjoint via automatic
differentiation technology. Issues of computational complexity of A.D. for the second
order adjoint are presented in Section 7.

Use of the Hessian of the cost functional to estimate error covariance matrices is briefly



discussed in Section 8.

The use of Hessian singular vectors used for development of a simplified Kalman filter
is addressed briefly in Section 9.

Finally as a numerical illustration we present in Section 10 the application of the
second order adjoint of limited area model of the shallow water equations to obtain an
accurate Hessian/vector product compared to an approximate Hessian vector product
obtained by finite differences. Automatic differentiation is implemented using the adjoint
model compiler TAMC. The Hessian/vector information is used in a truncated-Newton
minimization algorithm of the cost functional with respect to the initial conditions taken
as the control variables and its impact versus the Hessian/vector product obtained via
finite differences is assessed.

The numerical results obtained verify the theoretically derived computational cost of
obtaining the second order adjoint via automatic differentiation.

The ARPACK package was then used in conjunction with the second order adjoint to
gain information about the spectrum of the Hessian of the cost function.

Summary and conclusions are presented in Section 11.

2 Computing the second order information

In this chapter we will deal with deterministic models while the case of stochastic modeling
will be discussed later in this manuscript.

In general we will assume that the model has the general form:
F(X,U)=0 (1)

where X, the state variable describes the state of the environment, X belongs to H, which
is in general a Hilbert space. U is the input of the model, i.e. an initial condition which
has to be provided to the model to obtain from Eq. (1) a unique solution X(U). We will

assume that U € U which is also equipped with a Hilbert space structure.



The closure of the model is obtained through a variational principle which can be

considered as the minimization of some functional:
G(X.U) 2)

For instance, in the case of variational data assimilation, G may be viewed as representing
the cost function measuring the discrepancy between the observation and the solution
associated with the value U of the input parameter. Therefore the optimal input for the

model will minimize G.

2.1 First order necessary conditions

If the optimal U minimizes G, then it is given by the Euler equation which may be written

as:

VG(U) =0 (3)

where V(G is the gradient of G with respect to control variables.
The gradient of GG is obtained in the following way:
(i) we compute the Gateaux (directional) derivative of the model and of G in some

direction w. It comes that
oF . oFr
X4+ —y= 4
ax T aut =" ()

~

where () stands for the Gateaux derivative. For a generic function 7 it is given by:

2(U) = lim Z(U + au) — Z(U) (5)
a—0 (e}
92 (or 2£) is the Jacobian of F with respect to X (or U) and
. G 4 oG
X =|—=.X —
60, v) = | 55X + | 564 ©)

The gradient is obtained by exhibiting the linear dependence of G with respect to w.
This is done by

(ii) we introduce the adjoint variable P(to be defined later according to convenience).



The inner product of P is taken, leading to

OF OF
(a—X-X,P>+<8—U-u,P)—O (7)

() x) = () )

Therefore using (6), if P is defined as the solution of the adjoint model

oF\* oG
<a_x> PEax ©)
then we obtain
oF\" oG
VG(U) = — (8—U> Pt o (10)

Therefore the gradient is computed by solving Eq. (9) to obtain P, then by applying Eq.
(10).

2.2 Second order adjoint

To obtain second order information we seck for the product of the Hessian H(U) of GG
with some vector u. As before we apply a perturbation u to Eqgs. (1), (9), and from

Eq. (9) and (10) we obtain

PF . 2F " or1" . G . 8%G
[@"“axau'“] r [a_xl P X oo v W
and
VG(U) = H(U) -u=
PF ”F 1" or1" . 9G PG
- _[W'“auax] 'P_L‘B—U] Pt uex X 12

We introduce here () and R, two additional variables. To eliminate X and P, we
will take the inner product of Eq. (4) and (11) with @ and R respectively, then add the

results. We then obtain

. (OF\" oF\" PF .
(< (%) -0) + ()" 0) (a5 x.1)



0*F . [ OF

- (X (%)T : R) + <u (%)T : R) (13)

Let us take the inner product of Eq. (12) with u, then it comes

(H(U) -u,u) = (- [82F-u+ it ]T-P,u>+

ou? oUoX

+ (}37 [—S—I};] u) + <%u,u> + (X, <8?J@GX) u) (14)

but
O*F . . O*F
<P,WX-R> = <X,WP-R> (15)
and
0’F 0’F
<P, 78X8Uu . R) = <u, 7@X8UP . R) (16)

From (13) we get

. (or\" . o*F Pa\" . OF
(X<a—x> Q*ﬁ“*‘(@) 'R)+<P=a—x'3)

aF\" &°F o°a \"

- (“ - <8—U> @ axant BT (axau) R) (17)
Therefore if () and R are defined as being the solution of
oF\" _ O°F e &G\
(a_x> Ot ol 1= (a?) o= (Wau) u (18)
oF or
then we obtain:
O*F 0PF 0*G

(HU)w) = = <8U2 e auax) R

oF\" 8 F 8°G
- <8—U) Q- <8X8U 'P> Bt oxau” (20

The system (18)- (19) will be called the second order adjoint. Therefore we can obtain
the product of the Hessian by a vector u by
(i) solving the system (18)- (19).

(ii) applying formula (20).



2.3 Remarks

a) The system (18)- (19) which has to be solved to obtain the Hessian x vector product
can be derived from the Gateaux derivative (4) which is the same as (19). In the
literature, this system is often called the linear tangent model, this denomination being
rather inappropriate because it implies the issue of linearization and the subsequent notion
of range of validity which is not relevant in the case of a derivative.

b) In the case of an N-finite dimensional space then the Hessian can be fully computed
after N integrations of vector e; of the canonical base.

Equation (18) differs from the adjoint model by the forcing terms which will depend
on v and R.

¢) The system (18), (19)- (20) will yield the exact value of the Hessian/vector product.

An approximation could be obtained by standard finite differences, i.e.,
1
H(U) - u =~ o [VG(U + au) — VG(U)] (21)

where « is the finite-difference interval which has to be judicially chosen.
However several integrations of the model and of its adjoint model will be necessary in
this case to determine the range of validity of the finite-difference approximation (Wang

1995 and references therein).

2.4 Time dependent model

In the case of variational data assimilation the model F'is a differential system on the
time interval [0,7]. The evolution of X € H C [C(0,T)]" between 0 and 7" is governed

by the differential system,

dX
— = F(X)+ BV (22)

The input variable is often the initial condition,
X(0)=UeR" (23)

10



In this system [’ is a nonlinear operator which describes the dynamics of the model,
VeV C[C0,T)™is a term used to represent the uncertainties of the model, U is the
initial condition, and the criteria G is the discrepancy between the solution of (22)-(23)

and observations

1 T
JUV) =5 [ 10X = X (24)

where C' is the observation matrix, i.e., a linear operator mapping X into Ogs. The
problem consists in determining U and V that minimize J.
It is well know that in this case the Gateaux derivatives and adjoint model may be
written as
ap  [orF7"
— 4 |=| P = CT(CX =X, 25
o 5] (CX~ X (29
P(T) = 0 (26)
and the components of the gradient VJ with respect to U and V are
VJy = —P(0) (27)
VJy = —-B'P (28)

Let h be a perturbation on the control variables U and V

h—(Zg> (29)

The Gateaux derivatives X, P of X and P in the direction of h, are obtained as the

solution of the coupled system

dX OF
= a—XX + Bhy (30)
X(0) = hy (31)
ap[*F 1" 2 P
P(T)=0 (33)
Vg = —P(0) (34)
VJy = —-B"'P (35)

11



Taking the inner product of (30) with @ and of (32) with R, integrating from 0 to T,

then adding the resulting equations, it comes:

1) - (oxe) o () (52 )

N ([g_;]T.P73> —(cT-CX,R)| dt=0

After integration by parts and some additional transformations we obtain
v, dQ [or]" PF .
X, —— — | —=| - P —- ! dt
J ( an [ax} QF [axz ] h=C CR)

+ ( dR (gf;) R) dt—/OT(hV,BTQ)dt
+ (X(T> @(T)) (X(0),Q(0)) + (P(T), R(T)) — (P(0), R(0)) = 0

Let H be the Hessian matrix of the cost J. We have

H— Hyy Huyv
Hyy Hyy

Therefore if we define the second order adjoint as being the solution of

dQ I 0 S .
_Jrla_X] Q = [8X2 P] -R—C'CR
dR oF
. [a—x]R
it means that if we take
Q) =0
R(0) = hy

then it remains

(36)

(38)

(39)

(40)

(43)

(44)

The product of the Hessian by a vector is obtained exactly by a direct integration of

(40)- (42) followed by a backward integration in time of (39)- (41).

12



One can obtain H by an integration of the differential system

aQ [or1" *r 1" .
E*L’TX] Q = [6X2'P] ‘R—C"CR
dR oF
. [a_X] B
with the conditions
QT)=0
R(0) = ¢;

where e; is the n-vector of the canonical base of R™ obtaining

Hype = Q(O)
Hyve; = BTQ

One then integrates m times the differential system

@+ [8_F]TQ: [82}7

T
-P] -R—-CY'CR

dt 0X 0X?
dR or
@ [a_X] R=)
with initial and terminal conditions
Q) =0
R(0)=0

where f; are the m canonical base vectors of R™ obtaining

HVV : fj - BTQ:

(45)

(46)

(47)

(48)

(55)

The system defined by these equations is the second order adjoint model. The Hessian

matrix is obtained via n + m integrations of the second order adjoint. The second order

adjoint is easily obtained from the first order adjoint - differing from it by some forcing

terms, in particular the second order term. The second equation is that of the linearized

model (the tangent linear model).

13



2.5 Example: The shallow-water equations

The shallow-water equations (SWE) represent the flow of an incompressible fluid whose
depth is small with respect to the horizontal dimension.

The SWE can be written in a Cartesian system

ou ou ou oo
E+u5’_x+va_y_fv+8_x_0 (56)
o ov ov do
E+u8_x+v8_y+fu+8_y_o (57)
dp Ougp Ovp

T + B + By =0 (58)

In this system of equations X = (u,v, ¢)” is the state variable, u and v are the components
of the horizontal velocity,¢ is the geopotential and f the Coriolis parameter. We aim to
present this example in order to provide a didactic setup, thus we will make the strongest
simplifications.

a) We neglect the model error which following the previous notations implies B = 0.
We only control the initial conditions.

b) We impose periodic boundary conditions.

¢) The observations are assumed continuous in both space and time, which is tanta-
mount to assume C' = I, where [ is the identity operator. Let Uy = (ug,vo, ¢g)”, i.e., the

initial condition, then the cost function assume the form

J(Up) = é/OT[(u — Ugps)? + (U = Vgps)® + (& — Pops)?|dt. (59)

We derive directly the tangent linear model (TLM). The barred variables X = (u, v, @)
are the directional derivative in the direction of the perturbation h = (hy, hy, hy)? applied

to the initial condition and we obtain

ou  Ou_Ou Ou _Ou ,_ 0P
ov ov _Ov ov  _Ov 06
i -~ - - _ - = 1
8t+uax+uax+vay+vay+fu+ay 0 (61)

dp Oup Oup Ovep Ove B
8t+8x+8x+8y+5’y_

14



By transposing the TLM we obtain the adjoint model. Let P = (i, ,$)” be the

adjoint variable, then the adjoint model satisfies

ou
ot
ov
ot
¢

ot

ou

0v

+u%+va—y+u8—y —’Ua—y —fU+¢a_ Upps — U (63)
Qu 06 Ou 06 .. 0

+u8_y_u%+va_x+va_y+f +¢a_y—vobs v (64)
oi o6 06 0

+a—$+a—y U8—$+ 8_—¢obs_¢- (65)

To obtain the second order model we linearize the couple direct model and adjoint

model, we then transpose and obtain the second order adjoint variable @ = (4, v, (;B)T and

the variable R = (1, ,$)T defined by the TLM.

ol ou oo Ov  Ov . 0¢

5% “a_a;+”a—y+“a_y_ 8_y_f +¢8—x ~
:@g—z—u%—g—z ag—Z—q‘sg—f— (66)

% rag—z u%+@%+v§—§+ﬁ+¢g—¢;

g—f+%+g—2+u%+ g—j —%—g—i—_ (68)

We see that formally the first and second order adjoint models differ only by second order

terms, which contain the adjoint variables.

The calculation of second order derivatives requires the storage of the model trajectory,

the tangent linear model, and the adjoint model.

3 Sensitivity analysis and second order information

In general we can consider that a model has three kinds of variables: state variables Z in a

space £ which are the values of the variables describing the medium (wind, temperature,

pressure, humidity, ..

.); input variables I in a space Z which have to be provided to the

15



model: initial and/or boundary conditions. Most of the time these input variables are
not directly plugged (inserted) into the model, but derived from observations through
a method of data assimilation; parameters K: most of the models employ empirical
parameters (e.g. diffusivity) which have to be tuned through some validation process
prior to using the model. Therefore from a mathematical point of view, the model is

written as:

F(ZI,K)=0 (69)

where F is some PDE operator or its discrete form. We assume that [ and K are
prescribed (or I and K being prescribed), in which case defined by using an additional
functional G : £ — R called a response function. By definition, the sensitivity of the
model with respect to the input I (or the parameter K) is the gradient of the response
function with respect to I (respectively K). The difficulty comes from the fact that I
is implicitly used in G through Z. To compute the sensitivity we derive the model in a

direction h on I and a direction j on K

oF , OF oF

The directional derivative of G is

A L 0G

Computing the gradient of G with respect to I and K requires to exhibit the linear
dependence of G with respect to h and j. Let us now introduce D, an adjoint variable to

be defined later for convenience. We take the inner product of (70) with D obtaining

. [oF]" orF]" [oF7"
(Z, [8—Z} -D) + (h, [E] -D) + (], [B—K] -D) =0
Clearly, if D is defined as the solution of

oF\" oG
(8—2) D= (71)

16



then the identification yields

mzmﬁ:—Q%%ﬁTlﬂ_(%gngﬁ (72)

from which we get

oF]"
aF 1"

Therefore the sensitivity is estimated from (73) and (74) with D the solution of the
adjoint model (71).

The actual input of a model consists of observations which are transformed after some
more or less complicated process into the mathematical input. In the variational data
assimilation the discrepancy between the observational data X,,s and the solution of the

model
F(X,I,K)=0
is measured by a cost function J which may be defined as
I = C - XU K) = X

In the variational data assimilation method the observations appear then only in the
right-hand side of the adjoint model as a forcing term

arF" J
—| -P=— (75)
0X 0X

Therefore in order to derive the sensitivity with respect to the observations it will be

necessary to generalize the concept of model to include the adjoint model (75). The

generalized variable will be

Z:(ﬁ) (76)

and the generalized model

(77)

( F(X,I,K) )
F(Z,I,K) = =0

(8_F)T.p_a_J

0X 0X

17



The sensitivity will have to be derived on this system, therefore the adjoint of the opti-
mality system will have to be derived. Clearly, the sensitivity analysis depends now on

second order information. For an in-depth discussion see LeDimet et. al (1997).

4 Kalnay et al.(2000) quasi inverse method and sec-
ond order information

The inverse 3-D Var proposed by Kalnay et al.(2000) it is introduced by considering a

cost functional
J = %(Lém)TBl(L(Sx) + %[HLéx — 0y|" R~ [H Léx — 6y (78)

where dx is the difference between the analysis and the background at the beginning of
the assimilation window, L and L are the TLM and its adjoint, and H is the tangent
linear version of the forward observation operator H. B is the forecast error covariance
and R is the observational error covariance.

Taking the gradient of J with respect to the initial change 6z = 2% — %, where 2% and

2% are the analysis and first guess respectively, we obtain

VJ = L"(B™'Léx + H' R™'[H Loz — 6y)) (79)

In an adjoint 4-D Var an iterative minimization algorithm is employed to obtain the

optimal perturbation:

ba' = o VJ' ! (80)

where «; is the step in the minimization algorithm.
The inverse 3-D Var approach of Kalnay seeks to obtain directly the ” perfect solution”,
i.e. the special dx that makes V.J = 0, provided dz is small.

Eliminating in (79) the adjoint operator one gets

Léxr = (B '+ H'R 'H) 'H"R 6y (81)

18



Since we have the quasi-inverse model obtained by integrating TLM backwards, i.e. a

good approximation of L™, we obtain:
br =LY B '+ H'R'H)*H R 5y (82)

As shown by Kalnay et al. (2000) this is equivalent to the Adjoint Newton Algorithm
by Wang et al. (1997) except that it does not require a line minimization.

Wang et al. (1998) proposed an adjoint Newton algorithm which also required the
backwards integration of the tangent linear model and proposed a reformulation of the
adjoint Newton when the TLM is not invertible.They did not explore this idea in depth.
To show the link of inverse 3-D Var to second order information we follow Kalnay et al.
(2000) to show that inverse 3-D Var is equivalent to using a perfect Newton iterative
method to solve the minimization problem at a given time level.

If we look for the minimum of the cost functional at x + dx given that our present
estimate of the solution is z then expanding VJ(z + dz) in a Taylor series to second term
yields

VJ(z+ 6x) = VJ(z) + V2J(2)dx = 0 (83)

where V2J(z) is the Hessian matrix.

The Newton iteration is
dx = —[V?J(2)]"'VJ(2) (84)
For the cost function (78) the Hessian is given by
V3J(x) = L*[B~' + H'RT'H]L (85)
A first iteration with the Newton minimization algorithm yields
Soy =LY (B '+ H'R'H)L] 'L H' R oy (86)

which is identical with the inverse 3-D Var solution.

19



Since cost functions used in 4-D Var are close to quadratic functions one may view
3-D Var as a perfect preconditioner of a simplified 4-D Var problem.

In general availability of second order information allows powerful minimization algo-
rithms to perform (Wang et al. 1995, Wang et al. 1997) even when the inverse 3-D Var

is difficult to obtain as is the case with full physics models.

5 Hessian information in optimization theory

Hessian information is crucial in many aspects of both constrained and unconstrained
minimization. All minimization methods start by assuming a quadratic model in the
vicinity of the minimum of a multivariate minimization problem.

For the problem

Jnin F(X) (87)

We require in the multivariate case that

leX)[I =0 (88)

where X* is a stationary point and in order to obtain sufficient conditions for the existence
of the minimum of the multivariate unconstrained minimization problem, we must require

that the Hessian be positive definite.

5.1 Spectrum of the Hessian and rate of convergence of uncon-
strained minimization

The eigenvalues of the Hessian matrix predict the behavior and convergence rate for
unconstrained minimization. To show this, let us assume that a multivariate nonlinear

function F'(X) satisfies for some X,
[F(X) = F(X)| < ea (89)

and we define this as an acceptable solution.

20



If F'is twice continuously differentiable, i.e., I’ € C?, and if X* is a strong minimum
then
g(X") =0 (90)
where g(X*) is the gradient vector of F(X) and G(X*) its Hessian is positive-definite,
i.e., for X*

Xex: >0 (91)
Let us expand F' in a Taylor series about X*
1
F(X) = F(X* + hp) = F(X*) + 5h°p" G(X")p+ O(h?)  (since g(X") = 0)  (92)

where

lplf=1 —and  h=]X-X"| (93)

For any acceptable solution we obtain

26A

h2 — IX — X* 2 ~ A
X=X Sraxp

(94)

substantially affects size of || X — X*||, i.e., rate of convergence of the unconstrained
minimization (Gill 1981).

If G(X*) is ill-conditioned, the error in X will vary with the direction of the pertur-
bation p.

If p is a linear combination of eigenvectors of G(X*) corresponding to the largest
eigenvalues, the size of || X — X*| will be relatively small, while if, on the other hand p is
a linear combination of eigenvalues of G(X*) corresponding to the smallest eigenvalues,

the size of || X — X*|| will be relatively large, i.e., slow convergence.

5.2 Role of the Hessian in constrained minimization

The Hessian information plays a very important role in constrained optimization as well.
We shall deal here with optimality conditions where again Taylor series approximations
are used to analyze the behavior of the objective function F' and constraints h; about a

local constrained minimizer X*.
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We shall consider first optimal conditions for linear equality constraints.

1. The problem is cast as

min F(X), subject to AX =b (95)
XeRn

where A is an m x n matrix, m < n.
We assume F' is twice continuously differentiable and that rows of A are independent,
i.e., A has full row rank.

Let Z be the null space of A of dimension n x r with » > n — m. Then
AZ =0 (96)

Then the constrained minimization problem in X is equivalent to the unconstrained prob-
lem

min ¢(v) = F(X + Zv) (97)

VvERT
where X is a feasible point (Gill 1981, Nash and Sofer, 1996). The function ® is the
restriction of f onto the feasible region, called the reduced function.
If Z is a basis matrix for the null space of A, then ® is a function of n — m variables.

Optimality conditions involve derivatives of the reduced function. If X = X + Zv

Vo(v) = Z'VF(X+2Zv)=Z"VF(X)
V2o(v) = ZIVPFE(X+2v)Z = 7"V f(X)Z (98)
The vector
Vo(v) = Z'Vf(X) (99)

is called the reduced gradient of f at X.
Similarly the matrix

V20 (v) = 7TV f(X)Z (100)

is called the reduced or projected Hessian matrix.
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The reduced gradient and Hessian matrix are the gradient and Hessian of the restric-
tion of f onto the feasible region evaluated at X.

If X* is a local solution of the constrained problem then
X* =X+ Zv* for some v* (101)
and v* is the local minimizer of ®. Hence we can write
Vo(v') =0 (102)

and V?®(v*) is positive semi-definite.
Necessary conditions for a local minimizer. If X* is a local minimizer of F' and Z is
the null-space matrix for a
ZIVF(X*) =0 (103)
and ZTV2F(X*)Z is positive semi-definite. That is the reduced gradient is zero and the
reduced Hessian matrix is positive semi-definite (the second order derivative information
is used to distinguish local minimizers from other stationary points.)

The second order condition is equivalent to the condition
VvIZIN?E(X*)Zv >0  forall v (104)
Noting that p = Zv is a null space vector, we can rewrite (104) as
p' V’E(X*)p>0  forall p € v(A) (105)
i.e., the Hessian matrix at X* must be positive semi-definite on the null space of A.

5.3 Example(Nash and Sofer, 1996)

Consider
min f(X) = 2] — 22 + a5 — 23 + 4a3 (106)
s.t. Ty — T2+ 203 =2 (107)
X = (21,29,23)7
VIX) = 2z —2,2w9, 213 +4)" (108)
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Consider feasible point X* = (2.5, —1.5, —1)7,

Selecting
1 =2
Z=11 0 (110)
0 1

as the null space of matrix, A = (1, —1,2)%, one finds

3
ZTVf(X*)=<_12 é (1)) (—63 = (0,0)" (111)

Reduced gradient vanishes and first-order necessary conditions are satisfied, checking the

reduced Hessian matrix we find

2 0 0 1 =2
IV (X" 7 = L0y 9 g 1o | =(1 (112)
(_2 0 1) 00 —2)\o 1 <_4 6>

i.e., reduced Hessian matrix is partial differential at X*. However we notice that V2 f(X*)

itself is not positive definite.

5.4 Optimality conditions for nonlinear constraints

Consider the problem
min f(X) subject to ¢;(X) =0, i=1,2,...m (113)
Optimality conditions are expressed in terms of the Lagrangian function
LX) = F(X) = 3 hae) = OOV 8(X) (114

A is a vector of Lagrangian multiplier, g(X) is a vector of nonlinear constraint functions

(92‘)-
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5.5 Necessary conditions for nonlinear equality constraints

Let X* be a local minimizer of f subject to the constraints g(X) = 0. Let Z(X*) be the
null-space matrix for the Jacobian matrix Vg(X*)?. If X* is a regular point of the con-
straints, there exists a vector of Lagrangian multiplier X* such that VxL(X*, \*)Z(X*)
or equivalently Z(X*)'V f(X*) =0, Z(X*)"'Vikx L(X*, \*)Z(X*) is positive definite.

The second order optimality conditions are based on the reduced Hessian
Z( X)WV L(X*, ) Z(X*) (115)
and involve the Hessian of the Lagrangian L.

5.6 Use of second order information for optimization algorithms

Second order information can be used to improve performance of efficient large-scale
minimization algorithms.

It is known in optimization theory that Newton and Truncated-Newton minimization
algorithms display a quadratic rate of convergence and thus can sizably reduce the number
of iterations required to achieve a prescribed convergence criterion in 4-D Var where large
scale unconstrained optimization is required.

It was however a widespread belief in the geosciences community that obtaining the
Hessian of the cost functional(i.e., second order derivative information) is very difficult and
very expensive to compute (Santosa and Symes 1988). It become clear that in Truncated-
Newton algorithm (Wang 1995) one never needs to compute the Hessian operator explic-
itly but rather one needs to know its action on a given vector, and therefore the huge

matrix representing the Hessian does not need to be stored.

5.7 Application of second-order-adjoint technique to obtain ex-
act Hessian/vector product

We will exemplify this application by considering a Truncated-Newton algorithm for large-

scale minimization.
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Description of Truncated-Newton methods.

Truncated-Newton methods are used to solve the problem
mlnf(X)7 X = (1'171'27...71'”)T (116)

They are a compromise on Newton method whereby they compute a search direction by

finding an approximate solution to the Newton’s equations
V2 (Xp)p ~ =V f(Xy) (117)

using a conjugate-gradient iterative method, we note here that Newton equations are a

linear system of the form

AX =b (118)
where
A = V*f(Xy)
b = —V/f(Xy) (119)

The conjugate gradient method is “truncated” before the exact solution to the Newton
equations has been found. The C-G method computes the search direction, and requires
storage of a few vectors.

The only obstacle for using minimization is the requirement that it computes matrix-
vector products of the lines

AV = V2 f(Xy)v (120)

for arbitrary vectors v.

Omne way to bypass the storage difficulty is to approximate the matrix-vector products
using values of the gradient in such a way that the Hessian matrix need not be computed
or stored.

Using Taylor series

V(X + hv) = V(X)) +hV2f(Xp)v + O(h?) (121)
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we obtain

Vf(Xg +hv) = V[f(Xg)

2 BT
Vf(Xp)v = }l}_}ﬁ“é h (122)
i.e., we approximate matrix vector product
Xy + hv) — X
V2F(X)v & VIXy +hv) = V(i) (123)

h

for some small values of h.

The task of choosing an adequate h is an arduous one(see Nash and Sofer 1996, Chapter
11.4.1 and references therein).

For in-depth descriptions of the truncated-Newton (also referred to as the Hessian-free)
method see Nash (1982), Nash (1984a.,b,c¢,d), Nash (1985), Nash and Sofer (1989a,1989b)
as well as Schlick and Fogelson (1992a,1992b). A comparison of Limited Memory quasi-
Newton and Truncated -Newton methods is provided by Nash and Nocedal (1991), while
a comprehensive well-written survey of truncated-Newton methods is presented in Nash
(2000). Due to availability of second-order adjoint information, a description of which is
provided in Wang (1992, 1993),Wang et al.( 1995, 1997,1998), one can obtain a better
approximation to the Newton line search allowing a major speed-up of the convergence
rate.

A comparison between limited memory quasi-Newton and truncated-Newton methods

applied to a meteorological problem is described in depth by Zou et al.(1990, 1993).

5.8 The adjoint Truncated-Newton method

This algorithm(ATN) differs from usual Truncated-Newton algorithm only in the Hessian-

vector product calculation solving Newton equations at k-th iteration

Grpr = —8k (124)

where G, = V2f(X},) is the Hessian of the cost function f(Xy), py is the linear search

direction and
gr — Vf(Xk) (125)
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Here the second order adjoint produces an exact Hessian-vector product. The main steps
of the adjoint truncated Newton algorithm are:
1. Choose X initial guess to the minimizer X*, set iteration counter to zero.

2. Test Xy, for convergence. Check if following convergence criterion is satisfied:

gl < 107l ol (126)

If the criterion is satisfied then stop. Otherwise continue.

3. Solve Newton equations approximately using a preconditioned truncated C-G al-
gorithm where exact Hessian-vector product is obtained using the second order adjoint
model.

4. Set k =k + 1, update

X1 = X + apPpr (127)

where q4, is the step-size obtained by conducting a line-search using Davidon’s cubic

interpolation method. Go to step 2.

5.9 A method for estimating the Hessian matrix

Consider a cost function measuring the misfit between forecast model solution and avail-

able observations distributed in space and time.

J(2(lo)) = %{B(w(to)) — 2 (to)} - W (to){ B(a(to)) — 2*(to) }

+ % < B{F(2(ty))} — 2 (t,)) > W (tn) < B(F(x(to)) — 2% (t,) S(128)

where B is an observation operator, x(t,) the vector of model control variables, z°%(t,)
the vector of observational data at time t = t,., w(t,) the inverse of observation covariance

matrix.

N
F=T]F. (129)
n=1

the operator of model integration from time t = ¢y to t = t5. At the minimum of above

expression the gradient of the cost function V.J vanishes.
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If we introduce random variables 7(ty) and 7(ty) with zero expectations and whose
covariances are the diagonal elements of W' (¢y) and W~ (¢y) respectively to the obser-
vations

2 (to) = °*(to) + n(to), (130)
2 (tn) = 2™ (ty) + nltn). (131)

then VJ at x,,:, is random variable and we get
<VJV']>=J" (132)

where the angle in brackets stands for the mathematical expectation and J” is the Hessian
matrix. We can see that we obtain an outer vector product expression, which is rank-one
matrix.

For each realization i of x%(t) and x"(tx) we can calculate VJ at x,,;, and after

p such realizations we obtain at most a rank p approximation of the Hessian of the cost

function (Yang et al.1996, Rabier and Courtier 1992, Courtier et al. 1994)
1 & o
HrJ'~ J = EZVJ’ -V(J") (133)
i=1

This approach is analogous to Quasi-Newton methods where symmetric rank 1 or rank-
two update as are collected to update approximation of the Hessian or the inverse of the
Hessian matrix as the minimization proceeds. As shown by Yang et al. (1996) use of
the approximate J as preconditioner is extremely efficient. Forsythe and Strauss (1955)
have already shown that using the diagonal of the Hessian is optimal amongst all diagonal

preconditioning methods.

6 Second Order Adjoint via Automatic Differentia-
tion

There is an increased interest in obtaining the second order adjoint via Automatic Differ-

entiation (A.D.).
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Research work has been carried out both in the recent version of the Fortran TAMC
AD package designed by Giering and Kaminski(1998a) allowing for both the calculation
of Hessian/vector products as well as for the more computationally expensive derivation
of the full Hessian with respect to the control variables. See also Giering and Kaminski
1998b.

Comparable CPU times to these required by hand coding were reported.

The importance of the Hessian/vector products derived by A.D. is particularly impor-
tant in minimization where there is often interest not only in the first but rather in the
second derivatives of the cost functional which convey crucial information.

Griewank (2000) in his new book estimated the computational complexity of imple-
menting second order adjoints in a thorough manner.

He found that for calculating Hessian/vector products an effort leading to a run-time
ratio of about a factor of 13 was required.

The calculation of the ratio between the effort required to obtain Hessian/ vector
products against that required to calculate the gradient of the cost was found to be a
factor between 2-3 only.

Exploiting sparsity for A.D. calculation of the second order adjoint Griewank (2000)
shows that economy can be realized when the graph symmetry allows the AD computed

Hessian to assume the form:

Vif =287 ¢ R™" (134)

which leads to a dyadic representation first put forward in a paper by Jackson and Mc-

Cormick (1988).

Here:
Z = (V)ip., € RUTmm, (135)
S e R(Z—m—kn)x(l—m%—n); (136)
where
ViT =V X Vj, (137)
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v; which are intermediates with respect to independents = € R".

7 Computational Complexity of A.D. calculation of
the 2-nd order adjoint

Griewank (2000) starts by working out a representation of the complexity measure as a
task consisting of moves, adds, multiplications and nonlinear operations , thus obtaining

a representation of work (task) as:

moves no of fetches and stores
adds no. of adds and subtracts
k(task) = = ) e .
Work(task) mults no. of multiplications
nlops no of nonlinear operations

Then runtime can be written as:
TIME(task(F)) = whwork(task(F))

Here w is a vector of dim(work) of positive weights which depend on the computing
system and represent the number of clock cycles needed for fetching and/or storing data
items, multiplication, addition, and finally for taking into account nonlinear operations.

T

Usually the vector w* assumes the form

w! = (,1,7,0) (138)

and for most computing platforms p > max(1,7/2), 7 < 1 and v < 27. For example, this
assumption implies that a memory access () is at least as slow as an addition or half a
multiplication (7). Griewank (2000) derives the computational complexity of the tangent
model (directional derivative) wyang, gradient (first order adjoint) wy,qq, and second order

adjoint wsoap normalized by the complexity of the model evaluation as

21 6 26 14+3r 4 2 5
wmng:max{—'u, u+ ’ n+ 1+ 7T’ n+ T+ I/}E[Qy_] (139)
pwo3p+1 3p A+ 2u+v 2
219 3 11 243r 7 1 2
Wprag = manc{ 21 S WM E2HIT T FLETH2Vy 5 ) (1ap)

pw'3p+1" 3u+m 20 + v
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d4p 18u+6 22u+ 7491 p+ 3+ 57+ 3v
p o 3u+17 Bu+m 2u+v

WSOAD = maX{ } € [7, 10] (141)

As mentioned by Nocedal and Wright (1999) automatic differentiation has been in-
creasingly using more sophisticated techniques that allow when used in reverse mode to
calculate either full Hessians or Hessian/vector products . However the automatic dif-
ferentiation technique should not be regarded as a substitute for the user to think that
this is a fail-safe product and each derivative calculation obtained with A.D. should be
carefully assessed.

Gay (1996) has shown how to use partial separability of the Hessian in A.D. while
Powell and Toint (1979) and Coleman and More (1984) along with Coleman and Cai
(1986) have shown how to estimate sparse Hessian using either graph coloring techniques
or other highly effective schemes.

Software for the estimation of sparse Hessians is available in the work of Coleman,
Garbow and More (1985a, 1985b).

Averbukh et al. (1994) supplemented the work of More et al. (1981) (ACM Trans.
Math. Softw. 7, 14-41, 136-140, 1981) which provides function and gradient subroutines
of 18 test functions for multivariate minimization. Their supplementary Hessian segments

enable users to test optimization software that requires second derivative information.

8 Use of Hessian of cost functional to estimate error
covariance matrices

A relationship exists between the inverse Hessian matrix and the analysis error covariance
matrix of either 3-D VAR or 4-D VAR ( See Thacker 1989, Rabier and Courtier 1992,
Yang et al. 1996, LeDimet et al. 1997).

If x represents all variables being optimized and x* is the optimal value sought , then

in the vicinity of the minimum we have:

J=Cte+ (v —a*)'H((x — 2*) + HO.T (142)
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where H.O.T. means higher order terms.
Alternatively using standard formulation of 3-D and 4-D VAR (See Ide 1997 , Le

Dimet and Talagrand 1986), we have then:

V3J(x0) = B~ + (H)"(20)R™"H'(20) + H.O.T., (143)
where B is the covariance matrix of the background error, R is the observation covariance

matrix, H' is the nonlinear observation operator.

Hence the analysis error covariance matrix is:
B~ + (H")" (zo) R H' () (144)

and can be used provided we approximate the inverse Hessian of the cost in the vicinity
of the minimum of the cost functional.
A requirement is that the background error and the observation error are uncorrelated

(Rabier and Courtier 1992, Fisher and Courtier 1995).

9 Hessian Singular Vectors (HSV)

Computing HSV’s uses the full Hessian of the cost function in the variational data as-
similation which can be viewed as an approximation of the inverse of the analysis error
covariance matrix and it is used at initial time to define a norm.

The total energy norm is still used at optimization time. See work by Barkmeijer et
al. (1998, 1999).

The HSV’s are consistent with the 3-D VAR estimates of the analysis error statistics.

In practice one never knows the full 3-D VAR Hessian in its matrix form and a gen-
eralized eigenvalue problem is solved as we will describe below.

The HSV’s are also used in a method first proposed by Courtier (1993) and tested
by Rabier et al. (1997) for the development of a simplified Kalman filter fully described
by Fisher (1998) and compared with a low resolution explicit extended Kalman filter by
Ehrendorfer and Bouttier (1998).
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Let M be the propagator of the Tangent linear model, P a projection operator setting
a vector to zero outside a given domain.
Consider positive-definite and symmetric operators including a norm at initial and

optimization time respectively.

Then the SV’s defined by
< Pe(t), EPe(t) >

145
< E(to), OE(to) > ( )

under an Euclidean norm are solution of generalization eigenvalue problem.
M*P*EPMz = \C'. (146)

In HSV, the operator C' is equal to the Hessian of the 3-D Var cost function.
As suggested by Barkmeijer et al. (1998), one can solve (146) by a generalized algo-
rithm (Davidson 1975). See also Sleijpen and Van der Vorst (1996). Using

C=VJ=B"'"+H"R'H (147)
and carrying out a coordinate transformation
r=L"1r, LL'=B. (148)
Then we have a transformed operator

(LH'OL (149)

and the Hessian becomes equal to the sum of identity and a matrix with rank less or equal
to the dimensions of the vector of observations Fisher and Courtier (1995).

Versee (1999) proposes to take advantage of this form of the appropriate Hessian in
order to obtain approximations of the inverse analysis error covariance matrix, using the
limited inverse BFGS minimization algorithm.

Let H be (V2J)™! the inverse Hessian and H™' the updated version of the inverse

Hessian.
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S ="t — g (150)

y=g¢"~¢' (151)

One has the formula

s®y ) s® s

HY =U(H,y,s) = (I —
(H.y,5) = <y,s>'<y,s>

(152)

<, > is a scalar product and ® is the outer product.
These methods are useful when the second order adjoint method is not available due

to either memory or CPU limitations.

10 Numerical experiments: Application of AD Hes-
sian /vector products to the Truncated Newton al-
gorithm

For the numerical experiments we consider the truncated Newton algorithm to minimize
the cost function (59) associated to the SWE model (56) - (58). The spatial domain
considered is a 6000 km x 4400 km channel with a uniform 21 x 21 spatial grid, such that
the dimension of the initial condition vector (u,v,®)" is 1083, and the Hessian of the cost
function is a 1083 x 1083 matrix.

The initial conditions are those of Grammeltvedt (1969).As for the boundary condi-
tions, on the southern and northern boundaries the normal velocity components are set
to zero, while periodic boundary conditions are assumed in the west-east direction. Inte-
gration is performed with a time increment At = 600s and the length of the assimilation
window is ten hours. Data assimilation is implemented in a twin experiments framework
such that the value of the cost function at the minimum point must be zero. As the set
of control parameters we consider the initial conditions which are perturbed with random

values chosen from an uniform distribution.
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The second order adjoint model was generated using the tangent linear and adjoint
model compiler TAMC (Giering and Kaminski 1998a). The correctness of the adjoint
generated routines was checked using the small perturbations technique. Assuming that
the cost function f(X) is evaluated by the subroutine model(f, X), computation of the
Hessian/vector products H(X)u via automatic differentiation is performed in two steps:

first the reverse (adjoint) mode is applied to generate the adjoint model
admodel(X, f,adX, adf)
Next, the tangent (forward) mode is used to generate the SOA model

g-admodel(X, f,adX, adf, g-X, g_adX)

We initialize the tangent state vector g_X = u, the adjoint state vector adX = 0,
the second order adjoint g.adX = 0, and adf = 1. On exit the computed gradient
value is V f(X) = adX and the value of the Hessian/vector product H(X)u is returned
in g.adX. The performance of the minimization process using AD SOA is analyzed
versus an approximate Hessian/vector product computation given by (102), with a hand
code adjoint model implementation. The absolute and relative differences between the
computed Hessian/vector product at the first iteration ( initial guess state ) are shown
in Figure 1 for the first 100 components. The first order finite difference method (FD)
provides in average an accuracy of 2-3 significant digits. The optimization process using
FD stops after 28 iterations when the line search fails to find a descending direction,
whereas for the SOA method a relative reduction in the cost function up to the machine
precision is reached at iteration 29. The evolution of the normalized cost function and
gradient norm are presented in Figure 2 and Figure 3 respectively.

The computational cost is of same order of magnitude for both the finite-difference ap-
proach and the exact second-order adjoint approach. The second-order adjoint approach
requires integrating the original nonlinear model and its tangent linear model(TLM)

forward in time and integration of first order adjoint model and second order adjoint
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model backward in time once. The average ratio of the CPU time required to compute
the gradient of the cost function to the CPU time of evaluating the cost function was
cpu(V f)/epu(f) =~ 3.7. If we assume that the value of the gradient V f(X) in (123) is
already available (previously computed in the minimization algorithm), to evaluate the
Hessianxvector product using the FD method only one additional gradient evaluation
V f(X+hv) is needed in (123). In this case, we have then an average ratio to compute the
Hessian x vector product cpu(Hu)pp/cpu(f) ~ 3.7. Using the SOA method to compute
the exact Hessianxvector product we obtained an average cpu(Hu)soa/cpu(f) = 9.4, in
agreement with the estimate (141). We notice that in addition to the Hessianxvector
product the AD SOA implementation provides also the value of the gradient of the cost
function. The average ratio cpu(Hu)soa/cpu(V f) ~ 2.5 we obtained is also in agreement

with the CPU estimates derived in Section 7.

10.1 Numerical calculation of Hessian eigenvalues

[terative methods and the SOA model may be combined to obtain information about
the spectrum of the Hessian matrix of the cost function. In this application we used
the ARPACK package (Lehoucq et al. 1998) to compute five of the largest and smallest
eigenvalues of the Hessian matrix. The method used is the implicitly restarted Arnoldi
method (IRAM) which reduces to the implicitly restarted Lanczos method (IRLM) since
H is symmetric. For our application, only the action of the Hessian matrix on a vector
is needed and we provide this routine using the SOA model. The condition number is
evaluated as

R(H) = Jma (153)

)\min

The computed Ritz values and the relative residuals are included in Table 1 for the
Hessian evaluated at the initial guess point, and in Table 2 for the Hessian evaluated at

the optimal point X*. For our test example the eigenvalues of the Hessian are positive,
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such that the Hessian is positive definite and the existence of a minimum point is assured.
The condition number of the Hessian is of order k(H) ~ 10* which explains the slow
convergence of the minimization process.

Use of Hessian of a cost function eigenvalue information in regularization of ill-posed
problems was illustrated by Alekseev and Navon (2000a, 2000b). The application con-
sisted of wavelet regularization approach for dealing with an ill-posed problem of adjoint
parameter estimation applied to estimating inflow parameters from down-flow data in an
inverse convection case applied to the two-dimensional parabolized Navier- Stokes equa-
tions. The wavelet method provided a decomposition into two subspaces, by identifying
both a well-posed as well as an ill- posed subspace, the scale of which was determined by
finding the minimal eigenvalues of the Hessian of a cost functional measuring the lack of
fit between model prediction and observed parameters. The control space is transformed
into a wavelet space. The Hessian of the cost was obtained either by a discrete differ-
entiation of the gradients of the cost derived from the first-order adjoint or by using the
full second-order adjoint. The minimum eigenvalues of the Hessian are obtained either by
employing a shifted iteration method Zou et al.(1992) or by using the Rayleigh quotient.
The numerical results obtained illustrated the usefulness and applicability of this algo-
rithm if the Hessian minimal eigenvalue is greater or equal to the square of the data error
dispersion, in which case the problem can be considered as well-posed (i.e., regularized).
If the regularization fails, i.e., the minimal Hessian eigenvalue is less than the square of
the data error dispersion of the problem, the following wavelet scale should be neglected,

followed by another algorithm iteration.

11 Summary and Conclusions

The recent development of variational methods in operational meteorological centers
(ECMWEF, Meteo-France) has demonstrated the strong potential of these methods.

Variational techniques require the development of powerful tools such as the adjoint
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model, which are useful for the adjustment of the inputs of the model (initial and/or
boundary conditions). From the mathematical point of view the first order adjoint will
provide only necessary conditions for an optimal solution. The second order analysis goes
one step further and provides an information, which is essential for many applications:
i) sensitivity analysis should be derived from a second order analysis i.e. from the deriva-
tion of the optimality system. This is made crystal clear when sensitivity with respect
to observations is required. In the analysis observations appear only as a forcing term in
the adjoint model, therefore in order to estimate the impact of observations this is the
system that should be derived.

ii) second order information will improve the convergence of the optimization methods,
which are the basic algorithmic component of variational analysis.

iii) the second order system permits to estimate the covariances of the fields. This infor-

mation is essential for the estimation of the impact of errors on the prediction.

The computational cost to be paid in order to obtain the second order adjoint system
is twofold:

i) We have to consider the computational cost for the derivation of the SOA. It has

been seen that we can get it directly from the linear tangent model and from the adjoint
model. Only the right hand sides should be modified.
ii) Computing the second order information. Basically the first order information has the
same dimension as the input of the model. Let n be this dimension. The second order
information will be represented by n x n matrix. For operational models the computation
of the full Hessian matrix is prohibitive, nevertheless it is possible to extract the most
useful information (eigenvalues and eigenvectors, spectrum, condition number, ---) at a
reasonable computational cost.

The numerical results obtained illustrate the ease with which present day automatic

differentiation packages allow to obtain second order adjoint model as well as Hessian /vector
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product.They also confirm numerically the CPU estimates for computational complexity
as derived in Section 7 ( See also Griewank (2000)).

Numerical calculation of the leading eigenvalues of the Hessian along with its smallest
eigenvalues yields results similar to those obtained by Wang et al. (1998) and allow
valuable insight into the Hessian spectrum, thus allowing us to deduct the important
information related to condition number of the Hessian, hence to the expected rate of
convergence of minimization algorithms.

With the advent of ever more powerful computers ,the use of second order information
in data assimilation will be within realistic reach for 3-D models and is expected to become
more prevalent.

The purpose of this paper was to demonstrate the importance of new developments

in second order analysis: many directions of research remain open in this domain.
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Figures captions

Figure 1. The absolute (dashed line) and relative (solid line) differences between the
Hessian/vector product computed with the SOA method and with the finite difference

method at the first iteration ( initial guess state ). First 100 components are considered.

Figure 2. The evolution of the normalized cost function during the minimization
using the SOA method ( solid line ) and the finite difference method ( dashed line ) to

compute the Hessian/vector product

Figure 3. The evolution of the normalized gradient norm during the minimization
using the SOA method ( solid line ) and the finite difference method ( dashed line ) to

compute the Hessian/vector product
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Table 1: First five largest and smallest computed Ritz values of the Hessian matrix and
the corresponding relative residuals. The Hessian is evaluated at the initial guess point.

Largest values Rel. residuals | Smallest values Rel. residuals
5.29432E4+02  1.74329E-06 3.19071E-02 3.04094E-03
4.87111E4+02  2.18654E-06 6.02301E-02 2.85639E-03
4.35618E+02  1.79599E-06 7.77966E-02 1.44337E-03
3.86887E+02  2.03600E-06 7.83050E-02 1.99469E-03
3.81511E4+02  1.80812E-06 9.16425E-02 1.75624E-03

Table 2: First five largest and smallest computed Ritz values of the Hessian matrix and
the corresponding relative residuals. The Hessian is evaluated at the computed optimal
point.

Largest values Rel. residuals | Smallest values Rel. residuals
5.12937TE4+02  1.63503E-06 1.46726E-02 5.87833E-03
4.73981E+02  1.54048E-06 1.71499E-02 1.60547E-02
4.19611E4+02  1.73189E-06 4.56908E-02 3.07214E-03
3.88857TE4+02  1.70423E-06 7.22996E-02 1.89507E-03
3.78570E4+02  1.89242E-06 8.28272E-02 3.00616E-03
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