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Summary

The design of adaptive observations strategies must account
for the particular properties of the data assimilation method.
A new adjoint sensitivity approach to the targeted
observations problem is proposed in the context of four-
dimensional variational data assimilation (4D-Var). The
method is based on a periodic update of the adjoint
sensitivity field that takes into account the interaction
between time distributed adaptive and routine observations.
Information provided by all previously located observations
is used to identify best locations for new targeted
observations. Adaptive observations at distinct instants in
time are selected in a sequential manner such that the
method is only suboptimal. The selection algorithm
proceeds backward in time and requires only one additional
adjoint model integration in the assimilation window.
Therefore, the method is very efficient and is suitable for
practical applications. A comparative performance analysis
is presented using the traditional adjoint sensitivity method
as well as the total energy singular vectors technique as
alternative adaptive strategies. Numerical experiments are
performed in the twin experiments framework using a
two-dimensional global shallow water model in spherical
coordinates and an explicit Turkel-Zwas discretization
scheme. Data from a NASA 500mb analysis valid for
00Z 16 Mar 2001 6 h obtained with the GEOS-3 model was
used to specify the geopotential height at the initial time
and the initial velocities were obtained from a geostrophic
balance. Numerical results show that the new adaptive
observations approach is a promising method for targeted
observations and its implementation is feasible for large
scale atmospheric models.

1. Introduction

Short term prediction of rapidly evolving meteoro-
logical events may be greatly improved by reduc-
ing the analysis errors in dynamically sensitive
geographical regions. Adaptive (targeted) obser-
vations strategies aim to improve the forecast of
numerical weather prediction (NWP) models by
identifying optimal locations where additional
observations resources must be allocated. The
significant research dedicated recently to the
adaptive observations problem is primarily moti-
vated by the fact that forecast failure of severe
weather events (e.g., hurricane) may have dra-
matic economical and societal impacts. At the
same time, the expansion of the current observa-
tional network and the design of future observing
networks require an assessment of the value
added by observational data to improve the
model’s forecast. Finding the best cost-effective
methods for improving the forecast skill remains
a practical problem of major importance. Ex-
pensive field-deployed resources can be utilized
more effectively and the science success can be
maximized by selecting an optimal observational
network.

Mathematical framework and a rigorous
statistical formulation of the adaptive observation
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problem is described by Berliner et al (1999).
However, implementation of optimal statistical
methods may not be feasible in practice due to
the difficulty to provide accurate estimates of the
model and observational errors statistics, the
large dimension of the state space used in NWP
(~10"), and limited computational resources.
Recent field experiments such as FASTEX (Joly
et al, 1999), NORPEX (Langland et al, 1999)
and WSRP (Szunyogh et al, 2001) provided
real life applications where several feasible
methods for adaptive observations were tested.
An overview of the activities related to the use
of targeted observations at the National Centers
for Environmental Prediction (NCEP), including
a discussion of the economic value of targeted
observations, is presented in the review paper
of Toth et al (2002).

The main differences between the proposed
targeting strategies consist in the sensitivity ana-
lysis technique used to identify the areas where
the errors in the initial conditions are rapidly
growing and will mostly influence the forecast
over the verification domain.

Adjoint modeling has been proved to be an
essential tool for developing adaptive observa-
tions strategies. The adjoint of the tangent linear
model associated with the nonlinear forecast
model was used to implement targeting methods
using the dominant singular vectors (Palmer et al,
1998; Buizza and Montani, 1999), gradient
(adjoint sensitivity) fields (Langland et al,
1999; Langland and Rohaly, 1996) and sensitiv-
ity to observations (Baker and Daley, 2000;
Doerenbecher and Bergot, 2001). Pu and Kalnay
(2000) use the adjoint modeling and a quasi-
inverse linear model approach (Kalnay et al,
2000) for targeting observations. A comparative
analysis between targeted observations using the
total energy singular vectors (TESV) and Hessian
singular vectors (HSV) is presented in the recent
work of Leutbecher et al (2002).

The Ensemble Transform (ET) (Bishop and
Toth, 1999) and the Ensemble Transform Kalman
Filter (ET KF) (Bishop et al, 2001) are adaptive
techniques based on nonlinear ensemble fore-
casts. A comparison between the TESV and ET
KF targeting methods is presented by Majumdar
et al (2002).

Despite recent advances in the theoretical
formulation and implementation of targeting

methods, the problem of the optimal adaptive
sampling is a young discipline and many open
questions remain to be addressed. Studies per-
formed during the field experiments revealed the
potential benefits that may be achieved using
adaptive observations as well as various practical
issues and shortcomings of the current targeting
methodologies. The adaptive methods may be
effective as long as the linearization of the non-
linear dynamical model along a control trajectory
remains valid. Since in practical applications the
verification time is selected at a 24 h to 72 h range,
it is essential to establish the validity of the linear
approximation before these methods can be effi-
ciently used (Hansen and Smith, 2000). The
design of adaptive strategies must account for var-
ious factors such as: the forecast model details, the
magnitude of the uncertainty in the initial condi-
tions (Lorenz and Emanuel, 1998), the uncertainty
growth (Rabier et al, 1996), the data assimilation
scheme used to provide the initial conditions
(Bergot, 2001), the configuration of the existing
observational network (Morss et al, 2001), and the
number of the additional observational resources
to be allocated.

The characteristics of the data assimilation
system may be integrated in the adaptive obser-
vations method by using the sensitivity to obser-
vations technique proposed by Baker and Daley
(2000). This approach was studied for 3D-Var
data assimilation by Doerenbecher and Bergot
(2001) who emphasized that to optimize the effi-
ciency of adaptive techniques the assimilation
of both conventional and adaptive observations
must be considered.

In this paper we investigate the design of
an adaptive observations system given the con-
figuration of the conventional observational
network and assuming that four-dimensional
variational data assimilation (4D-Var) is per-
formed. The TESV and ET KF targeting methods
were considered in the 4D-Var context by
Leutbecher et al (2002) using a perfect model
scenario and assuming that adaptive observations
are available only in the middle of the assimila-
tion period. Our work represents a first attempt to
fully account for the temporal dimension of the
4D-Var scheme by considering time distributed
adaptive observations. In particular, we show that
the interaction between routine (fixed location)
and targeted observations taken at distinct
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instants in time plays a significant role in the
efficiency of the adaptive strategy. We design a
simple mechanism to account for the interdepen-
dence between space and time distributed obser-
vations and further use it to implement an adjoint
based targeting method. A comparative study
with the traditional adjoint sensitivity (AS) and
TESV methods is performed using a shallow
water model. Our preliminary results indicate
that at a relatively low additional computational
cost, as compared to the AS method, the benefits
of the new proposed targeting method on forecast
error reduction may be significant.

The paper is organized as follows: in Sect. 2 we
formulate the adaptive observations problem in
the 4D-Var data assimilation context. The two-
dimensional shallow-water model used in the
numerical experiments is presented in Sect. 3.
An idealized framework (twin experiments) is
used to implement the data assimilation procedure
by considering a truth and a control experiment. In
this way we assume that the forecast error is only
due to the misspecification of the initial condi-
tions. “Observations” are selected from the truth
experiment state trajectory and are assimilated
with 4D-Var using the initial conditions of the
control experiment as background. In Sect. 4,
we briefly review the AS and TESV methods for
targeting observations. The interaction mecha-
nism between time distributed adaptive ob-
servations and fixed location observations is
described in Sect. 5. A new adjoint-based target-
ing method using interactive adjoint sensitivity
(IAS) fields is presented. In Sect. 6, we perform
a comparative performance analysis between [AS,
AS, and TESV targeting methods in two different
scenarios: first, we assume that the adaptive obser-
vations are the only available observations to the
data assimilation system; second, fixed location
observations distributed on a sparse uniform sub-
grid are also included into the analysis. Conclud-
ing remarks and further research directions are
presented in Sect. 7.

2. 4D-Var data assimilation
and adaptive observations

Bergot (2001) studied the efficiency of adaptive
observations using incremental 3D-Var and
incremental 4D-Var data assimilation schemes
(Courtier et al, 1994). The results obtained for

a SV targeting method demonstrate that the sam-
pling of the sensitive area and the assimilation
scheme are intimately dependent. In this section,
we formulate the adaptive observations problem
in the 4D-Var data assimilation context. We
assume that a model forecast ¥ = M(x?)
initiated at time #, from a background estimate
x” of the true atmospheric state x{, predicts a
severe weather event at a future verification time
t, >ty over the verification domain D,,.

In the analysis time interval [ty, T], T <1, the
conventional observing network provides a set of
time distributed observations ©/. We will refer to
O/ as routine (fixed location) observations and
the location of O/ is a priori known at the initial
time 7. In practical applications the length of the
assimilation window [fo, T] is usually 6h,
whereas the verification time ¢, is selected at
24h to 72h range from ;. We assume that at
each time instant t;, to<t;, <7, i=1,2,...,1 a
number of n; additional observational resources
may be deployed. We will refer to these addi-
tional observations as adaptive observations,
O, as their location may be selected in a flexible
manner and it may change from one time instant
to another. The observational data O = {x°}
available over the assimilation window has there-
fore two components O = O’ U 0, where O =
{01,03,...,07} is the adaptive observational
path to be determined.

4D-Var data assimilation provides an optimal
estimate x{ of the true initial state x}, as the solu-
tion of the minimization problem

T(x0) =T+ T° J(x5) = min J (%), (1)

where 7” is a measure of the distance of the initial
state from the background estimate and J° is a
measure of the distance between the model trajec-
tory and observations over the assimilation
window. The reader should refer to the work of
Jazwinski (1970), and Daley (1991) for a detailed
description of the various assumptions used by the
data assimilation techniques, including a continu-
um formulation and the probabilistic interpretation.
Using adaptive observations and by perform-
ing data assimilation, we aim to reduce the error
of some aspect of the forecast at the verification
time on the verification domain which may be
expressed as
Tolxo) = 5 (PO —x), PO~ X)), (2)

v v
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where X/ = M(x¢), x’¥ is the verifying analysis
at t,, and P is a diagonal projection operator on
D, satisfying P*P = P> = P. The inner product
(-,-)c is defined as (y,z) = (y, Cz) where Cis a
symmetric positive definite matrix. In practice
the total energy norm is often used to measure
the forecast error (2).

The adaptive observations problem is now for-
mulated as follows: find an adaptive observa-
tional path O ={0{,05,...,0f} such that
the solution x of the corresponding 4D-Var data
assimilation (1) minimizes the forecast error
expressed by the functional (2).

In previous studies only one targeting time
was taken into consideration (/=1). Our prob-
lem formulation takes fully into account the
temporal dimension of the 4D-Var scheme by
considering multiple targeting instances (i.e.,
1> 1) in the assimilation window.

3. The model and the data
assimilation procedure

The numerical experiments and the analysis
presented in this paper were performed in the
twin experiments framework using a global
two-dimensional shallow-water model. The
selection of this model is motivated by the fact
that the shallow water equations (SWEs) serve as
a first prototype of the partial differential equa-
tions describing the horizontal dynamics of the
atmosphere and have been widely used by the
atmospheric modeling community as a tool for
testing promising numerical methods for solving
atmospheric and oceanic problems. The simpli-
city of the SWEs facilitates a thorough investi-
gation of the numerical methods and their
complexity (Williamson et al, 1992) while cap-
turing important characteristics present in more
comprehensive atmospheric models.

3.1 Model description

In spherical coordinates, the dynamical equations
are written
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(5)
where f=2€)sin 6 is the Coriolis parameter, €2 is
the angular speed of the rotation of the earth, /4 is
the height of the homogeneous atmosphere, u and
v are the zonal and meridional wind components,
respectively, # and A are the latitudinal and longi-
tudinal directions, respectively, a is the radius of
the earth, and g is the gravitational constant.

The software developed by Giraldo and Neta
(1995) was used to implement the forward model
integration. We consider a discretization on a
72 x 36 grid (5° x 5°) such that the dimension
of the discrete state vector x = (h,u,v) is 7776.
The model is integrated for 24 h using an explicit
Turkel-Zwas scheme (Navon and de Villiers,
1987; Neta et al, 1997) and a Robert filtering
using a Laplacian type time-diffusion term is per-
formed for both spatial and temporal smoothing.
To maintain numerical stability, the integration
time step is limited to Ar = 200 s. Data obtained
from a 500 mb analysis valid for 00Z 16 March
2001 6h using the GEOS-3 model (1.25° x 1°)
was used to specify the geopotential height at the
initial time #; and the initial velocity fields were
obtained from a geostrophic approximation. The
model state at the initial time and after a 24 h
integration are displayed in Fig. 1.

3.2 The twin experiments framework

The data assimilation procedure and the impact of
the adaptive observations are analyzed using a
perfect model scenario. We will assume that the
initial conditions described in the previous section
represent the true (reference) atmospheric state
x;/ and the model trajectory X" (¢) obtained dur-
ing the reference run is used to provide observa-
tions. A background field is prescribed using a
5% random perturbation in the reference initial
velocities. In a more realistic data assimilation
environment, bred vectors obtained from the
ensemble forecasts may be used to reflect the
uncertainty in the initial conditions and to
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estimate the background error covariance matrix
(Kalnay, 2002; Corazza et al, 2002).

A forecast initiated at ¢, from the background
estimate reveals large errors at the verification time
t,=24h over the spatial domain D, = [125°E
175°E] x [80° S 40° S] whichisthus selected as the
verification domain. In Figs. 2 and 3, we show the
errors in the background field and the 24 h forecast,
respectively, evaluated in the total energy norm

(6x(), 0), 6x(), 0)) = %((514)2 +(60)%) + h% (6h)2,
(6)

where 6x(), 0) = x(\, 0) — x" (), 6).

4D-Var data assimilation is performed in the
assimilation window [0 —6]h and we assume
that routine observations are available at t=6h
only on a coarse 20° x 20° mesh grid. The error
in the forecast initiated from the analysis
obtained with the data assimilation using routine
observations is shown in Fig. 4. We notice that
the overall quality of the forecast is improved
over the entire domain. However, the forecast
error over the domain of interest, D,, remains
relatively large. To further improve the forecast
over D,, we assume that each hour in the interval
[0 — 6] h five adaptive observations may be taken
and their optimal location must be determined by
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Fig. 2. Distribution of the error
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mate of the initial model state.
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shown in the total energy norm
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initial guess error in total energy norm at t=24h

Fig. 3. Distribution of the fore-
cast error at t=24h using the
background estimate as the initial
condition. Isopleths of the magni-
tude of are shown in the total en-
ergy norm. The largest forecast
error is observed over the region
D, =[125°E 175°E] x [80° S
40° S] which is thus selected as

the verification domain

Fig. 4. Distribution of the fore-
cast error in total energy norm at
the verification time when data
assimilation is performed with
observations from fixed locations
only (20° x 20° coarse grid).
The verification domain D, =
[125°E 175° E] x [80° S 40° S]is

an appropriate targeting procedure. In the next
section we review two traditional adjoint-based
targeting methods: the singular vectors and the
adjoint sensitivity.

4. Singular vectors and adjoint sensitivity

Implementation of the adjoint-based targeting
methods relies on the linearization of the non-
linear forecast model. The intimate relationship
between the adjoint (gradient) sensitivity and sin-
gular vectors is discussed by Rabier et al (1996).
If we consider a perturbation 0x; of the model
state at t; then, to first-order approximation, the

shown with solid line

induced perturbation at ¢, is expressed as

oxy = M(x; + 6x;) — M(x;) ~ L(t;, 1,)6xi,  (7)
where L(7;,1,) is the resolvent of the tangent lin-
ear model in the optimization interval ¢, — ¢;. On

the tangent phase space we consider an inner
product

<5X7 6y>c = <6X7 C6Y>7 (8)
where C is a symmetric positive definite matrix
(usually taken to be diagonal), and (-,-) is the

Euclidean inner product. The adjoint operator of
L in (-, ). is defined as

(L*C6x, 8y)c = (6%, Loy)c ©)
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such that L*¢ = CflL*C, where L* is the
adjoint operator of L in (-, ).

4.1 The singular vectors approach

The singular vectors approach to targeting
observations (Palmer et al, 1998; Buizza and
Montani, 1999) searches for the directions where
errors in the state vector at the targeting time
will propagate most at the verification time on
the verification domain. From Eq. (9) it follows
that

16x(t0)llc = (6x(r:), L™ Lox(1:)) (10)

such that the directions characterized by maxi-
mum relative growth ||0x(z,)|/]|6x(%)|- are
the singular vectors v;(t;)

L*CLuy(1;) = o) (11)

associated with the largest singular values o;.

The singular vectors (11) depend on the C-
norm selection. Palmer et al (1998) show that
the analysis error covariance metric (AECM) is
an optimal choice to improve the forecast skill.
In variational data assimilation the Hessian of the
cost functional may be used to obtain an approxi-
mation of the analysis error covariance matrix.
The studies of Barkmeijer et al (1998; 1999) per-
formed in a 3D-Var data assimilation context
show that if the operator C at the initial time is
specified to be the Hessian matrix of the cost
functional of the variational data assimilation,
then the computed singular vectors (HSV) are
consistent with 3D-Var estimates of analysis
error statistics. The total energy metric corre-
sponds to a diagonal matrix C and is often used
to facilitate the practical implementation. Among
other simple metrics, the total energy metric has
the advantage that the spectra of the associated
dominant singular vectors (TESV) is consistent
with the spectra of estimates of the analysis error
variance (Palmer et al, 1998).

If P denotes the projection operator on D, the
singular value problem

[C*PLC 2" C*PLC 1 = o* ), (12)
v = C 2y (13)

must be solved in the optimization interval
t, — t.

Iterative solvers (see, e.g., ARPACK package,
Lehoucq et al, 1998) may be used to evaluate the
singular values and the associated singular vec-
tors. For large-scale atmospheric models this is
an intensive computational process and in prac-
tice only 4 to 10 leading singular vectors are used
to define the target area as we explain next.

4.1.1 Target area definition using
N leading singular vectors

To identify the target area at the targeting time ¢;
we follow the approach of Buizza and Montani
(1999). Consider the first N leading singular vec-
tors v;,j=1,2,...N at t; with unit C-norm,
[yl =1,j=1,2,...N and let f*(}, 6) denote
the value of the C-norm of v; at grid point (A, 0)
(e.g., total energy norm at (A, #)). A sensitivity
function is defined as

N
o
FE(N, 0) = (—’) (N, 0). 14
S0 =322 o (14
Additional observations taken at ¢; at the loca-
tions where the sensitivity field (14) is maximal
are believed to be of significant benefit for the
forecast improvement. The target area is defined
as

Di = {()‘7 0)|F1€()‘7 0) 2 O-SFMAX}7
Fuvax = I(na>)<F§<>\, 0) (15)

and adaptive observations locations at f; are
selected as the first n; locations (A, 6) where
FS(X, 0) attains the largest values.

The computational cost of implementing tar-
geting methods using singular vectors is signifi-
cantly increased when multiple targeting instants
are considered since for each #;,i =1,2,...1 a
new set of singular vectors must be computed.

4.2 The adjoint sensitivity approach

In the adjoint sensitivity approach adaptive
observations are selected using the gradient of a
functional 7, defined in terms of the forecast at
the verification time. Ideally, we would like to
evaluate the sensitivity of the forecast error (2)
with respect to the model state at the targeting
time. A large sensitivity value indicates that
small variations in the model state will have a
significant impact on the forecast at the verifica-
tion time.
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For practical applications (e.g., flight plan-
ning) the functional J, must be based on the
forecast alone since the forecast error at ¢, is
not known at the planning time. Some of the
difficulties related to the operational use and
the implementation of the targeting strategies in
a real-time framework are discussed by Baker
and Daley (2000), and Langland et al (1999).
The sensitivity of the average lower-troposphere
vorticity was used during FASTEX to select tar-
geted observations (Langland et al, 1999).

Valuable insight on the benefits and shortcom-
ings of targeted observations may be obtained by
performing a posteriori (‘“‘after-the-fact”) stu-
dies. In this case we may consider J, to be the
cost functional (2) representing the forecast error
at t,. The sensitivity field is defined as

Fo(X,0) = VT7 (X0l c, (16)

where V.J LC is the gradient of the verification
functional. Corresponding to (2) we have

VIS (x) = LP(x{ - x). (17)

Adaptive observations at ¢; are deployed at the
first n; locations (A, §) where F,,(\, 6) has largest
values. Identification of the target area at distinct
instants in time proceeds backward from #; to #;
and an efficient evaluation of all V7€ (x;),i =
1,2,...1 is obtained through a single adjoint
model integration. The adjoint sensitivity method
may be therefore implemented at a reduced com-
putational cost even in the case when multiple
targeting instants are considered.

5. Interactive adaptive observations

Baker and Daley (2000) noticed that traditional
targeting methods based on the a priori evalua-
tion of a forecast sensitivity field are completely
ignorant of the characteristics of the data assim-
ilation system. Using the adaptive methods
described in the previous section optimal adap-
tive observations at #; have been determined
assuming that these are the only available obser-
vations. Since 4D-Var data assimilation takes
into consideration all observations available in
the assimilation window, the interaction between
observations must be considered by the targeting
procedure. In particular, the following question
should be addressed: If individually each of
Of at t;,i=1,2,...,1 is an optimal adaptive

observations set, is O = {07, 05,...,0;} still
optimal? Bishop (2000) shows with a simple
example that an attempt to globally search for
an optimal solution from the set of all feasible
adaptive observations paths may easily lead to a
problem which is computationally impractical.
Therefore, even for practical applications of
moderate complexity, a serial observations pro-
cessing must be considered.

The new adjoint sensitivity approach we
describe in this section takes into consideration
the interaction between adaptive observations at
distinct instants in time and the interaction with
routine observations. The selection algorithm
proceeds backward in time and adaptive observa-
tions O are selected in a sequential manner. A
periodic update of the sensitivity field at ¢; is
performed to account for all observations already
located at t;; as follows: denote by
O =0"U0iuU...U0%, (18)
the set of all fixed observations and all adaptive
observations already located in the time interval
[ti+1,t] and consider Jo,,,(x;) the cost func-
tional (1) restricted to the observational set
O, as a function x;. We introduce a new sensi-
tivity field associated to the observations set O,

Fi(A0) = VT 0, (A, 0l (19)
and update the sensitivity field F, at #; according

to
Fo(\0) = Fu()\, 0) (1 + am> B (20)

Fy(X, 0)
The updated sensitivity field is inversely propor-
tional to the relative value of the sensitivity field
provided by the set of observations that have
been already located. Optimal sites for deploying
adaptive observations at t; are now selected at the
locations where the sensitivity field (20) has the
largest magnitude. Therefore, new observations
at t; are located in regions where the sensitivity
of J, to the model state is large and little addi-
tional information may be obtained from all
previously located observations. The interaction
between observations is controlled by the weight
coefficient o > 0 which reflects our confidence in
the previously selected observations (e.g., obser-
vational errors).

The sensitivity field F; may be evaluated at
once for all i=1, I—1,...,1 by periodically
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updating the observational set (18) during the
adjoint model integration. The additional compu-
tational cost is roughly given by the computa-
tional cost of a backward integration in the
assimilation window [fy, T]. In practice the
length assimilation window is much smaller than
the length of the time interval [7,, ¢,] such that the
computational overhead required by the update
(19)—(20) is relatively small compared to the
evaluation of the sensitivity field (16). The ben-
efits of the new approach to targeting observa-
tions are presented next in a comparative
analysis with both the adjoint sensitivity and sin-
gular vectors methods.

Remark. Since the sensitivity field (19) depends
on the observations, the update (19)—(20) may be
used only for a posteriori targeting applications.
However, the method may be easily extended for
‘““a priori” estimates, by defining the functional
Jo,,,(x;) only in terms of the forecast at the loca-
tions (A, #) determined by O, 1, in a similar man-
ner as J,. This approach was presented in the
recent work of Daescu and Carmichael (2003).

6. Numerical experiments

In this section, targeting strategies using the lead-
ing total energy singular vectors (TESV), adjoint

<= = =

1st SV in 500hPa geopotential height field, [4,24]h

0 60E 120E 180 120w

1st SV in 500hPa geopotential height field, [0,24]h

60W 0

7= = <~

Fig. 5. Time evolution of the
first singular vector in 500 hPa
geopotential height field for the
optimization interval [z;, 24h].

0 60E 120E 180 120w

60w 0 Results shown for #;=0h, 2h,
4h, 6h
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1st SV in 500hPa geopotential height field, [6,24]h

0 60E 120E 180 120w

60w 0

sensitivity (AS), and adjoint sensitivity with
interactions between observations (IAS) are
analyzed for the shallow-water model and the
experimental settings described in Sect. 3. We
assume that each hour in the assimilation
window [0, 6 h] five adaptive observations must
be selected using an appropriate targeting strat-
egy. A comparative performance analysis is pre-
sented for two different scenarios: In the first
experiment (E1) we assume that the adaptive
observations are the only observations available
to the data assimilation process (O = ). In the
second experiment (E2) we assume that routine

60E 120E 180 120w

60W 0
Fig. 5 (continued)

observations are also available on a 20° x 20°
coarser mesh grid. For each experiment and for
each of the targeting methods a new data assim-
ilation procedure is performed using the quasi-
Newton limited memory BFGS minimization
algorithm (Liu and Nocedal, 1989). The minimi-
zation proceeds until the cost functional is
reduced to 0.1% of its initial value. For each
targeting method, during the minimization pro-
cess of the cost functional 7 (over the entire
domain) which provides the initial condition xg,
we also monitor the evolution of the normalized
forecast error reduction J,(x()/J.(X0) at
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t,=24h over the verification domain
D, = [125°E 175°E] x [80° S 40° S]. The total
energy norm is used to define the inner product
(-,-)c and to quantify the forecast error (2) at
ty.

To implement the AS and IAS methods we used
the gradient fields F', associated to the verification
functional (2) (a posteriori targeting). To imple-
ment the TESV method, 10 leading singular
values and their associated singular vectors were
computed at each targeting instant ¢#; using the
ARPACK package (Lehoucq et al, 1998). The
evolution of the first singular vector in 500 hPa

geopotential height field for the optimization
interval [z, 24 h] witht=0h, 2h, 4 h, 6 h is shown
in Fig. 5. Similarly, in Fig. 6, we show the time
evolution of the first singular vector in zonal wind
field. The adjoint model associated with the for-
ward model discretization was generated using
the automatic adjoint compiler TAMC (Giering
and Kaminski, 1998). The validity of the linear
model approximation (7) in the interval [0, 24 h]
was verified by comparing nonlinearly evolved
perturbations (control minus perturbed experi-
ment) with a perturbation evolved using the
tangent operator.

1st SV in zonal wind field, [4,24]h

0 60E 120E 180 120w

60w 0

Fig. 6. Time evolution of the
first singular vector in zonal
wind field for the optimization

[4] 60E 120E 180 120W

60W 0 interval [f;, 24 h]. Results shown
for t;=0h, 2h, 4h, 6h
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1st SV in zonal wind field, [6,24]h

e

1st SV in zonal wind field, [2,24]h

0 60E 120E 180 120w

6.1 A comparative analysis of targeting
methods

We begin our analysis by presenting the results
obtained for the experiment E1 when only adap-
tive observations are provided to the data assim-
ilation. The evolution of the sensitivity field
obtained with the adjoint sensitivity (AS) method
is shown in Fig. 7 for t;=0h, 2h, 4h, 6 h. The
location of the adaptive observations (marked
with “A” in Fig. 7) corresponds to the grid
points where the sensitivity field has the largest
magnitude.

60w 0

Fig. 6 (continued)

The dynamics of the sensitivity field is signif-
icantly changed when the interaction between the
observations is taken into consideration as we
show in Fig. 8 for the TAS targeting method.
Adaptive observations using adjoint sensitivity
with interaction between observations (IAS) are
marked in Fig. 8 with “[]”. Locations marked
with “A” in Fig. 8 were selected also by the
previous approach (AS). Since the selection of
the adaptive observations proceeds backward in
time, #;=06h is the first targeting instant. At this
time no observations were previously located
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Fig. 7. Time evolution of the sensitivity field corresponding to the adjoint sensitivity method (AS). Results shown for ;= 0h,
2h, 4h, 6 h. The location of the adaptive observations at ¢; is marked with “/A” and corresponds to the grid points where the

sensitivity field has the largest magnitude

such that the sensitivity fields are identical and
both AS and IAS methods selected the same set
of observations. To identify new locations at the
following targeting instants, the IAS method
takes into consideration the influence of all

observations already located. From Figs. 7 and
8 we notice that the periodical update of the
sensitivity field results in less spatial clustering
for the adaptive observations. The IAS method
searches to identify regions where the magnitude
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Fig. 8. Time evolution of the sensitivity field corresponding to the adjoint sensitivity method with interaction between
observations (IAS). Results shown for 7;=0h, 2h, 4h, 6h. The location of the adaptive observations selected by the IAS
method at 7; is marked with “[]”. Locations marked with “A” were also selected by the AS method (Fig. 7)

of the sensitivity field is large, conditioned by
the information accumulated from previously
located observations.

The evolution of the sensitivity field corre-
sponding to the total energy singular vectors

method is shown in Fig. 9, and the location of
the adaptive observations is marked with “o”.
For each targeting method, the distribution of
the forecast error at the verification time over

the verification domain after data assimilation
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Fig. 9. Time evolution of the sensitivity field and adaptive observations location (marked with “‘o’’) using the leading singular

vectors method (TESV). Results shown for t;=0h, 2h, 4h, 6h

takes place is shown in the total energy norm
in Fig. 10. The forecast error using the back-
ground estimate as initial conditions is also dis-
played in Fig. 10. At each iteration during the
minimization process of the cost functional J
we monitor the forecast improvement using

targeted observations by evaluating the ratio
Jv(x3)/ T v(X0). The results displayed in Fig. 11
show that the targeting method using interactive
adaptive observations outperforms the adjoint
sensitivity as well as the singular vectors target-
ing methods.
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Fig. 10. Distribution of the forecast error at the verification time over the verification domain when data assimilation is
performed using adaptive observations only. For reference, the error in the forecast initiated from the background estimate is
also displayed. Isopleths of the magnitude are shown in the total energy norm

Next we analyze the forecast improvement for
the second scenario, E2, when both routine and
adaptive observations are provided to the data
assimilation. The benefits of using adaptive
observations are evaluated by comparison with
an assimilation procedure using only routine
observations. Four data assimilation experiments
were performed with observations provided as

follows: fixed observations only, fixed and adap-
tive observations using singular vectors, fixed
and adaptive observations using adjoint sensitiv-
ity, fixed and adaptive observations using adjoint
sensitivity with interaction between observations.
For each experiment, the minimization process
and the forecast error reduction J,(x3)/J (Xo)
during the minimization of the corresponding
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cost functional J are shown in Fig. 12. The dis-
tribution of the forecast error at the verification
time over the verification domain is displayed in
Fig. 13.

iteration number

Fig. 11. Top: The minimization
of the cost functional 7 when
only adaptive observations corre-
sponding to TESV, AS, and IAS
targeting methods are assimi-
lated. Normalized values are
shown on a logarithmic scale.
Bottom: During the iterative pro-
cess, for each targeting method
the forecast error reduction at
the verification time over D, is
quantified by evaluating the ratio

Jo(x5)/ T v(%0)

Fig. 12. Top: The minimization
of the cost functional 7 when
both routine and adaptive obser-
vations provided by the TESV,
AS, and IAS targeting methods
respectively, are assimilated.
Normalized values are shown
on a logarithmic scale. Bottom:
During the iterative process, for
each targeting method the fore-
cast error reduction at the verifi-
cation time over D, is quantified
by evaluating the ratio J,(x)/
J(Xo). For reference, the results
obtained using routine observa-
tions only are also displayed

The potential forecast improvement using

estimate,

adaptive observations is limited by various
factors such as the accuracy of the background
the configuration of the existing
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Fig. 13. Distribution of the forecast error at the verification time over the verification domain when data assimilation is
performed using both routine and adaptive observations provided by the TESV, AS, and IAS targeting methods, respectively.
For reference, the results obtained using routine observations only are also displayed

observational network, and the number of addi-
tional observational resources allocated. In Fig.
12, it can be seen that the adaptive method using
the interaction between observations still pro-
vided the best forecast over D,, but there is only
little improvement as compared to the adjoint
sensitivity method.

Remark. One should notice that by using adap-
tive observations we only attempt to improve the
forecast over a given sub-domain at a given
future time. In Fig. 14, we show the distribution
of the forecast error at 24h over the entire
domain after data assimilation using fixed and
interactive adaptive observations takes place.
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Fig. 14. Distribution of the fore-
cast error in total energy norm at
the verification time when data
assimilation is performed with
routine and adaptive observa-
tions provided by the IAS target-
ing method. Significant forecast
improvement may be observed
over the verification domain

By comparison with Fig. 4, it can be seen that
adaptive observations have significant benefits
on the forecast over the verification domain
D, = [125°E 175°E] x [80° S 40° S], and little or
no forecast improvement is observed outside this
region.

7. Conclusions and further research

In this study the adaptive observations problem is
presented in the context of 4D-Var data assimila-
tion. It is emphasized that to fully account for the
temporal dimension of the 4D-Var scheme, mul-
tiple targeting instants must be considered in the
assimilation window. Our work represents a first
step in the design of optimal sampling strategies
for time distributed adaptive observations. In par-
ticular, it is shown that the interaction between
targeted observations taken at distinct instants in
time has a significant impact on the efficiency of
the adaptive strategies.

A new adjoint sensitivity approach for adap-
tive observations is proposed which takes into
consideration the interaction between adaptive
observations at distinct instants in time and their
interaction with routine observations. The main
difference between the proposed method and the
traditional adjoint sensitivity approach consists
in the dynamic update of the sensitivity field
associated with the verification functional. To
perform this update, a new sensitivity field is
used to quantify the information accumulated at
the targeting time from all previously located

B6OW

(see also Figs. 3 and 4)

observations. A simple interaction mechanism
is designed such that new adaptive observations
are located in regions where the sensitivity of the
forecast to the model state is large and little addi-
tional information may be obtained from all
previously located observations. The additional
computational cost is given by a backward inte-
gration of the adjoint model in the assimilation
window such that the method is feasible to
implement for large scale applications. No claim
is made that the proposed approach provides an
optimal adaptive observational path among all
feasible sets of observations. However, our ana-
lysis presented for a global 2D shallow-water
model shows that the new targeting method
may be used to provide an improved model fore-
cast as compared to the total energy singular vec-
tors and the adjoint sensitivity targeting methods.

Given the potential impact to improve the
models forecasts and the multitude of practical
applications, significant research remains do be
done to develop optimal adaptive observations
techniques. Our future research will focus on
the implementation of targeting methods using
interactive adjoint sensitivity fields for compre-
hensive operational atmospheric models. A
rigorous theoretical framework to account for
time distributed adaptive observations remains to
be formulated.

In the adjoint method described in this paper
targeted observations are identified backward in
time, starting from the end of the assimilation
window. Since from a theoretical point of view
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the least uncertainty is at the shortest lead time, a
natural approach is to design a forward marching
adaptive method. In the 4D-Var context, a deci-
sion must be made at #, for the entire adaptive
observational path, such that the influence of the
targeted observations located at #; > 1y on tar-
geted observations at f, >¢; must be ‘a priori’
estimated. The main difficulty in this case is to
find an efficient way to forward propagate the
information provided by the location of targeted
observations. A forward marching targeting algo-
rithm based on a similar updating technique may
be implemented if we assume that at each target-
ing instant #;, N; possible deployments of addi-
tional observations are a priori specified. A
comparative analysis between the forward/back-
backward marching targeting algorithms will be
presented in our future work. We will also inves-
tigate the application of interactive sensitivity
fields to targeting methods using singular vectors
and ensemble forecasts. The sensitivity to obser-
vations technique proposed by Baker and Daley
(2000) may be extended to the 4D-Var data
assimilation to analyze the interaction between
the existing observational network, the back-
ground estimate of the model state, and adaptive
observations.

Further adaptive observations studies should
also consider the availability of worldwide
remote sensing observations that are typically
not used in the routine data assimilation (e.g.,
GPS, satellite radiances of massively multiple
channel sensors, cloudy radiances) in conjunc-
tion with aircraft deployed targeted observations.
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