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ABSTRACT 

 
A specification of the initial ensemble in ensemble data is addressed. The presented work 

examines the impact of ensemble initiation in the Maximum Likelihood Ensemble Filter 

(MLEF) framework, but it is applicable to other ensemble data assimilation algorithms as 

well. Two new methods are considered: first, based on the use of the Kardar-Parisi-Zhang 

(KPZ) equation to form sparse random perturbations, followed by spatial smoothing to 

enforce desired correlation structure, and second, based on spatial smoothing of initially 

uncorrelated random perturbations. Data assimilation experiments are conducted using a 

global shallow-water model and simulated observations. The two proposed methods are 

compared to the commonly used method of uncorrelated random perturbations. The 

results indicate that the impact of the initial correlations in ensemble data assimilation is 

beneficial. The root-mean-square error rate of convergence of data assimilation is 

improved, and the positive impact of initial correlations is noticeable throughout the data 

assimilation cycles. The sensitivity to the choice of the correlation length scale exists, 

although it is not very high. The implied computational savings and improvement of the 

results may be important in future realistic applications of ensemble data assimilation.  
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1. Introduction 

 

Ensemble data assimilation is a fast developing methodology designed to address 

the probabilistic aspect of prediction and analysis. It lends itself as a bridge between 

relatively independently developed data assimilation and ensemble forecasting 

methodologies. Beginning with the pioneering work of Evensen (1994), followed by 

Houtekamer and Mitchell (1998), there are now many ensemble data assimilation 

algorithms (Pham et al., 1998; Lermusiaux and Robinson, 1999; Brasseur et al., 1999; 

Keppenne, 2000; Bishop et al., 2001; Anderson, 2001; van Leeuwen, 2001; Whitaker and 

Hamill, 2002; Reichle et al., 2002a; Anderson, 2003; Snyder and Zhang, 2003; Ott et al., 

2004; Zupanski, 2005; Zupanski and Zupanski, 2005). Realistic applications with state-

of-the-art models and real observations are also intensively pursued in recent years 

(Houtekamer and Mitchell, 2001; Keppenne and Rienecker, 2002; Haugen and Evensen, 

2002; Szunyogh et al., 2005; Houtekamer et al., 2005).   

One of the important issues is specification of the initial ensemble. Ideally, the 

initial ensemble perturbations should represent the error statistics of the initial model 

state. In practice, the error statistics are measured by the error covariance. It is known that 

the error covariance has a structure, in principle defined by model dynamics, and 

formally represented by correlations between model variables. In particular, one would 

like to create initial perturbations reflecting the structure of the error covariance.   

Specification of the initial ensemble in ensemble data assimilation varies in 

literature.  It is generally recognized that the initial forecast error covariance should have 

a realistic correlation structure, with climatologically consistent perturbation magnitudes. 

For example, the Evensen (2003) approach is based on the use of a Fourier representation 

of the perturbations, effectively representing a prescribed correlation structure of the 

analysis error covariance.  A random number generator is used to create random phase 

shifts. Houtekamer and Mitchell (1998) define a method which samples random 

perturbations with prescribed forecast error statistics (e.g., correlations). In their 

subsequent papers, the method is further refined (Mitchell and Houtekamer, 2000), and 

later generalized (Mitchell and Houtekamer, 2002) to create geostrophically balanced 

perturbations within a primitive equations framework.  Bishop et al. (2001) use a set of 
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largest scale-orthogonal sine and cosine perturbations to initiate the ensemble data 

assimilation. Dowell et al. (2004) use prescribed ellipsoidal perturbations, with randomly 

chosen locations in the vicinity of the observation locations, with the idea that 

correlations at the correct location should improve the algorithm performance.  

In general, the above mentioned approaches benefit from a specific structure of 

the forecast model, or from knowing the characteristics of the forecast error covariance 

for a particular model.  This may not be feasible when the ensemble data assimilation 

system needs to be applied with many different models, with poorly known, or even 

unknown error statistics. Therefore, an approach which does not rely on an extended 

knowledge about the forecast error statistics may better fit the general needs of 

researchers who use various models, or are developing new models.   

One such method is commonly used to initiate ensemble data assimilation (e.g., 

Hamill et al., 2003; Whitaker and Hamill, 2003; Whitaker et al., 2004; Szunyogh et al., 

2005; Anderson et al., 2005),  with the idea of using ensemble forecasting to develop 

balanced and correlated ensemble perturbations. This method consists of forming 

uncorrelated random fields at some time in the past, sampled from a probability 

distribution with prescribed mean and standard deviation. Then, the ensemble forecasts 

with such defined initial perturbations are integrated until the ensemble perturbations 

develop realistic correlation structure.  At that time, the ensemble forecast perturbations 

are used to form an initial forecast error covariance for data assimilation. The standard 

deviation of the initial uncorrelated random perturbations can be defined using the 

statistics of the forecast model, if known, or the forecast error used for data assimilation, 

if available.  In most cases, however, these estimates are not available, and one has to rely 

on general estimates of standard deviation.   

There are few potential difficulties with the last approach, however. If the 

prescribed initial standard deviation is too small, it may take long time before realistic 

magnitudes of perturbations are formed. Another possible problem is that realistic 

forecast error correlations may also take long time to develop.   

In this paper, we further explore the possibility to improve the latter approach, by 

considering correlated random initial fields. Two options are considered: one, to impose 

correlations directly on the uncorrelated random fields, and second, to first make spatially 
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sparse random fields, and then impose correlations. The second method employs the 

Kardar-Parisi-Zhang (KPZ) equation to create spatially sparse random amplitude peaks.  

Both methods rely on imposing correlations on the initially uncorrelated random field.  

The proposed methods do not assume any particular form of perturbations (e.g., wave-

like, or ellipsoidal), nor the location of random perturbations. This reflects the situation in 

realistic applications, where the optimal perturbations have an unknown, seemingly 

random structure and location.   

The proposed methods are evaluated within the Maximum Likelihood Ensemble 

Filter (MLEF – Zupanski, 2005) framework.  However, the methods are directly 

applicable to other ensemble data assimilation algorithms as well. The methodology will 

be explained in Section 2, experimental design will be presented in Section 3, results in 

Section 4, and conclusions will be drawn in Section 5. 

 

2. Ensemble initiation methodology 

 

2.1. The problem 

 

The initiation of ensemble data assimilation is defined as specification of 

perturbations which form the initial forecast error covariance at time t0, before the first 

observation cycle. Since in this work the MLEF algorithm (Zupanski, 2005) is used, let 

the square-root forecast error covariance be defined as 
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where k is the time index representing the analysis cycle, Pf is the forecast error 

covariance at time tk (e.g., current analysis time), S is the number of ensemble 

perturbations, M is a nonlinear forecast model integrated from time tk-1 to time tk, bi are 

the columns of the square-root forecast error covariance at time tk, {  are 

the columns of the square-root analysis error covariance at time t

}1: ,S,ii K=p

k-1, and xa is the analysis 

at time tk-1.   
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Since the initiation of ensemble data assimilation is the process of defining the 

perturbation vectors {  at time t}1: ,S,ii K=b 0, we would like to utilize the formulation 

(1) in order to produce balanced perturbations, i.e. perturbations constrained by model 

dynamics. The use of (1) implies that the problem of defining the initial {  

at time t

}1: ,S,ii K=b

}1: ,S,i K=0 is substituted by the problem of defining the perturbations {  at 

some previous time.  Let 

ip

τ−0

}1 ,S,K=

t denote the time when the initial perturbations 

 are defined, where τ  is a prescribed time interval. Typically, for global 

models, τ is a time interval ranging between 6 and 24 hours. Therefore, a typical method 

for initiation of ensemble data assimilation consists of: (i) specification of the 

perturbations {  at time 

}1:{ ,S,ii K=p

p : ii τ−0t , and (ii) ensemble forecasting from τ−0t  to 

t0, used to define the perturbations { },Si K1: ,i =b  at time t0.  

There are two important practical aspects of initiating an ensemble forecast. One 

is that the initial ensemble perturbations { }1: ,S,ii K=p  need to have an inherent 

randomness, reflecting the fact that the magnitude and location of unstable initial 

perturbations are not known a priori.  Second issue is that a correlation structure in the 

initial perturbations is desired, since the outer product of perturbation vectors forms an 

error covariance.  Matching these two requirements may not be simple, due to an 

additional restriction imposed by the ensemble size.   

 

2.2. The ensemble initiation methods 

 

Let  be uncorrelated normal random variable belonging to a 

normal  distribution, where {

},,,{ 21 SZ zzz K=

),0 2
zσ(N }1: ,S,ii K=z
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 are the perturbation vectors defined 

in model space. The covariance is defined as , where E denotes 

mathematical expectation, and the superscript T denotes the transpose. A new random 

variable P can be obtained by applying a change of variable P=FZ, where F is a 

nonsingular linear operator. The covariance of the transformed variable P is  

I2)( z
TZZE σ==
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If the operator F is normalized, the matrix FFT defines the correlation matrix for P. 

Furthermore, if F itself is defined as a correlation matrix with characteristic length L, the 

characteristic length of FFT is 2/L (e.g., Gaspari and Cohn, 1999).  

 Using the relation (2) and the approximation  

where M is the Jacobian of the nonlinear model M, the forecast error covariance at time t
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Note that the above mentioned approximation is used only to illustrate the covariance 

structure. In real situations the nonlinear difference is used instead. We now proceed with 

defining three variants of the described ensemble initiation methodology, by focusing on 

the specification of the initial ensemble { }1: ,S,ii K=p  at time τ−0t .  The ensemble 

forecasting from τ−0t to t0 is employed in all three variants, as means for creating 

dynamically balanced perturbations at time t0.  

 

2.2.a. The uncorrelated random method 

 

The uncorrelated-random method is a simple technique used to create initially 

uncorrelated random perturbations, and, with some modifications, the method most often 

used to specify the initial ensemble. In practice, a standard uncorrelated normal 

(Gaussian) random variable with zero mean and unit variance at time τ−0t  is created 

first. This can be done using the Box-Muller method (Box and Muller, 1958), which 

transforms an independent random variable uniformly distributed between 0 and 1 into a 

normal N(0,1) variable. Using a prescribed standard deviation , one can create an 

uncorrelated random variable Z~N(0, ). Then, using the linear transformation F=I, the 

actual initial perturbation used in (1) is P=Z, i.e. {

zσ

,,K

2
zσ

}1; Siii == zp .  This is followed 
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by an ensemble integration from τ−0t to t0. If τ  is adequately chosen, the forecast error 

covariance at time t0 will have the correlations developed and balanced by the forecast 

model equations, as implied by Eq.(1). 

 

2.2.b. The correlated random method 

 

The correlated-random method is a straightforward extension of the uncorrelated-

random method. The difference comes from the definition of the initial random variable 

P. In principle, the correlations at time t0 will be developed according to Eq.(1), but this 

may take a long time. In order to improve the forecast error covariance at time t0, a 

change of variable P=FZ is introduced at time τ−0t , which creates correlated random 

perturbations. In our applications, the matrix F is a block-diagonal Toeplitz matrix, with 

elements calculated using the space-limited compactly-supported function (4.4) from 

Gaspari and Cohn (1999). Each block corresponds to a particular model variable, and 

possibly to a particular model vertical level, as explained in Zupanski et al., (2005). 

 

2.2.c. The correlated Kardar-Parisi-Zhang method 

 

Since we anticipate smoothing of initially uncorrelated random perturbations, the 

use of the correlated-random method can produce smeared perturbations, without any 

particular spatial pattern. A typical forecast error covariance, however, would likely show 

dominant spatial patterns in the area of dynamical instability. Thus, it may be beneficial 

to first create random perturbations with spatially sparse (e.g., distant), large amplitude 

peaks, and then to apply smoothing. If the distance between the peaks corresponds to the 

correlation length scale, the smoothed field will have a desired appearance with few 

dominant spatial patterns. In order to create the uncorrelated random patterns the Kardar-

Parisi-Zhang (KPZ) equation is used (Kardar et al., 1986; Beccaria and Curci, 1994; 

Newman and Bray, 1996; Maunuksela et al., 1999; Marinari et al., 2002) in one-

dimensional form 
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where h is the perturbation vector and ξ is a random forcing vector, in our application 

white Gaussian random noise with unit variance. This equation is generally used to 

explain the dynamics of interfaces moving through random media. It can be described as 

a dynamic renormalization procedure used in statistical turbulence theory (Verma, 2000). 

In another application related to dynamic localization of Lyapunov vectors, the Lyapunov 

vectors can be viewed as exponentials of the roughened interface, and thus can be 

represented by the KPZ equation (Pikovsky and Politi, 1998). In principle, any other 

differential equation with random forcing could be used instead of the KPZ equation. The 

implication to our problem is that the KPZ model integration produces spatially sparse 

uncorrelated random perturbations.  

Note that there is an important dependence between the sparseness of the random 

patterns and the imposed correlation length scale: an average distance between the 

uncorrelated random amplitude peaks (i.e. the sparseness of the random patterns) should 

correspond to the correlation length scale.  This requirement assures that the non-zero 

perturbations are defined over the full integration domain. The sparseness of random 

patterns depends on the length of time integration of the KPZ equation: the longer the 

integration, the sparser the patterns. The empirical relation used in this algorithm is 

Ltime ×= α , where time refers to the integration time of the KPZ equation,  L is a 

prescribed length scale, and α is an empirical parameter.  In our application α=0.2 is 

chosen, based on the trial-and-error results. 

A typical result of the one-dimensional integration of Eq. (4) is shown in Fig.1. 

One can note uncorrelated random perturbations at each grid-point, with only few 

dominating peaks, thus indicating a spatially localized pattern. The sparseness of these 

patterns is what we are looking for. The impact of the correlation imposed on the KPZ 

random perturbation is seen as a smooth dotted line in Fig.1. The created smooth line 

represents a correlated random perturbation that would be used as an initial ensemble 

perturbation.  
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When applying the KPZ equation in discrete form, a simple centered finite 

differencing is used for spatial derivatives, and the one-level forward scheme for time 

integration (e.g., Haltiner and Williams, 1980). The particular algorithmic steps relevant 

to the creation of sparse random perturbations are as follows: (i) given the correlation 

length scale L, define the number of time steps for the KPZ equation integration 

according to the empirical formula, (ii) along each of the forecast model coordinates, 

integrate one-dimensional KPZ equation, followed by imposing correlations along that 

coordinate. A sequential application of the one-dimensional KPZ equation in the 

direction of model coordinates is used to define the perturbation in a two-dimensional 

domain. This procedure is not unique (since it depends on the order of integration), nor 

optimal, but the important consequence is that the resulting perturbation is sparse and 

localized in space.  If needed, the perturbation h is occasionally renormalized by 

imposing an upper limit |h| Nσ, where σ is the standard deviation (σ=1 and N=3 in this 

case).  

≤

 

2.3. Algorithmic details 

 

 All described ensemble initiation methods can be presented in the following 

sequence of calculations, assuming that the initial time of data assimilation is t0: 

(i) define the time interval τ, and specify the initial conditions at time τ−0t . 

(ii) at time τ−0t , prescribe the standard deviation σz and the correlation length 

scale L, 

(iii) at time  τ−0t , create the initial ensemble perturbations using one of the 

methods (e.g., uncorrelated-random, correlated-random, correlated-KPZ), 

(iv) perform ensemble forecasting from τ−0t to t0, and 

(v) at time t0 use the ensemble forecast perturbations to form the (square-root) 

forecast error covariance. 

 

As suggested earlier, a potential advantage of this ensemble initiation method is 

that it is algorithmically simple, yet it includes the nonlinear forecast model as a balance 
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constraint for ensemble perturbations.  Since forecast model is a component of an 

ensemble data assimilation algorithm, the use of various forecast models is essentially 

transparent from the user’s point of view. A potential drawback is that the ensemble 

forecasting in step (iv) may be computationally demanding in some cases.   

 

3. Experimental design 

 

In this section, few basic experiments are defined in order to illustrate the impact 

of the initial ensemble on ensemble data assimilation. As mentioned earlier, the MLEF 

methodology (Zupanski, 2005) is used in all experiments.  

 

3.1. Model 

 

A finite-difference shallow-water model developed at the Colorado State 

University is used in this study (Heikes and Randall, 1995a,b), with the improved 

numerical scheme which  better conserves the potential enstrophy and energy (Ringler 

and Randall, 2002). This is a global model, constructed on a twisted icosahedral grid.  

The grid consists of hexagons and pentagons, effectively reducing the pole problem. The 

prognostic variables are height, velocity potential, and stream function. The time 

integration scheme is the third-order Adams-Bashforth scheme (Durran, 1991). The 

model has been successfully tested on the suite of seven test cases described by 

Williamson et al. (1992) (e.g., Heikes and Randall, 1995a). The number of grid cells used 

in this study is 2562, which corresponds to a model resolution of approximately 4.5 

degrees of longitude-latitude.  The height points are defined at the center of each cell, 

while the wind components are defined at the two opposite cell corners. This results in 

approximately two times more wind points than the height points. Both components of 

the wind (e.g., east-west and north-south) are defined at each wind point. Overall, the 

total number of prognostic variables is 12,800.  

   

3.2. Observations 
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The observations are created by adding random perturbations from a normal 

(Gaussian) distribution N(0,R) to a model forecast, which we refer to as the truth. This 

implies a perfect model assumption, since the same model is used in assimilation. 

Although the model equations formally predict the velocity potential and the stream 

function, more conventional wind observations are created, and later assimilated. The 

observation error covariance R is assumed to be diagonal, i.e. no correlation between 

observations is assumed. The observation error chosen for the height is 5 m, and for the 

wind is 0.5 ms .  There are 1025 observations defined in each analysis cycle, uniformly 

distributed around the globe. These observations consist of approximately 500 height 

observations, and 500 wind observations. Since the two wind components (east-west and 

north-south) are co-located, there is approximately 250 observation points for each wind 

component.  The observations are assimilated every six hours.  

1−

 

3.3. Experiments 

 

The initial conditions are defined from the fifth test case from Williamson et al. 

(1992), which corresponds to a geostrophically-balanced zonal flow over an isolated 

conical mountain.  The initial zonal flow is 20 , and the mountain is centered at 

30

1ms−

0N, 900W, with a height of 2000 m. This set-up is characterized by the excitation of 

Rossby and gravity waves, with notable nonlinearity occurring in the vicinity of the 

mountain.  

In all experiments there are 1000 ensemble members used. Such high number is 

not necessarily needed, but it helps in relaxing the restrictions due to a limited ensemble 

size, thus allowing a more focused examination of the initial ensemble specification. The 

observations are defined at model grid-points, implying the linearity of the observation 

operator. The initial conditions of the forecast run used to define the observations are 

defined at t0. The assimilation is performed over 15 days, which corresponds to 60 data 

assimilation cycles of 6-hour intervals. The initial conditions for the experimental run are 

defined the same way as in the forecast run used to create the observations (e.g., the test 

case 5), however initiated 6 hours earlier in order to create erroneous initial conditions. 

Thus, the prescribed time interval τ is 6 hours, and the initial ensemble is defined at 
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h. With this set-up, the forecast error covariance at time t0 has a standard deviation 

about two times larger than the observation error (i.e. approximately 10 m for height and 

1 ms  for winds), which is considered to be realistic.  

 The experiments are separated in two groups: (i) the three ensemble initiation 

methods, i.e. the uncorrelated-random, correlated-random, and correlated-KPZ, are 

compared, and (ii) the sensitivity of the analysis to the correlation length scale is 

evaluated. 

The results are compared using the root-mean-square (RMS) analysis error, 

defined as a difference between the analysis and the truth (e.g., the forecast used to create 

observations), valid at the time of the analysis. In addition, the χ2-test (e.g., Menard et al., 

2000), and the rank histogram of normalized innovation vectors (e.g., observation minus 

guess) (Reichle et al., 2002b; Zupanski, 2005), are also used.  

 

4. Results 

 

4.1. Impact of the ensemble initiation methodology 

 

 Three data assimilation results are presented in this subsection, which differ only 

in the method used to create the initial ensemble perturbations at time τ−0t : (i) the 

uncorrelated-random method, (ii) the correlated-random method, and (iii) the 

correlated-KPZ method. For the correlated-random and the correlated-KPZ methods the 

correlation length scale of 4000 km was used for all three variables, the height and the 

two wind components.  

The performance of the three ensemble initiation methods is shown in Fig.2, in 

terms of the analysis RMS errors for the height and wind components.  For reference, the 

observation errors are plotted as well. First thing to note is that in all ensemble initiation 

methods the analysis RMS error is smaller than the observation error, indicating a 

successful performance of the algorithms irrelevant of the initiation method used. One 

can also notice a significantly improved performance of the algorithms which use a 

correlated initial ensemble, i.e. the correlated-random and the correlated-KPZ methods. 

This suggests that initial correlations are important for the ensemble initiation. Between 
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themselves, however, the correlated-random and the correlated-KPZ results do not differ 

very much. A closer look (not shown here) indicates that the correlated-KPZ method does 

produce consistently smaller RMS errors than the correlated-random method, however 

not at the significant level.  This indicates that the sparseness of the perturbations is not 

an important feature in the initial ensemble. The uncorrelated random correlation method 

eventually produces the analysis RMS errors smaller than the observation errors, but the 

RMS errors remain relatively large. The correlated-random and the correlated-KPZ 

methods, on the other hand, both achieve good convergence in less than one day (i.e. 3-4 

cycles) and overall much smaller analysis RMS errors. The height RMS error reduces to 

0.8 m after 60 analysis cycles, while the wind RMS errors are reduced to less than 

0.1 ms . It is interesting to note that there is no visible trend of the RMS errors in the 

experiments to become closer as the assimilation proceeds. Although one would expect 

the RMS errors from all experiments to become equal eventually, the RMS error 

difference between the experiments remains approximately constant.  This apparent 

paradox will be further explored in the subsequent section.  

1−

In terms of the normalized innovation vector statistics, the correlated-random and 

the correlated-KPZ methods again show an improved performance over the uncorrelated-

random method. Since the results of the correlated-random and the correlated-KPZ 

methods are very similar, only the results of the correlated-KPZ method will be shown 

(e.g., Figs.3 and 4). The optimal value for the χ2-test is one. The results in Fig.3 indicate 

large deviations from the optimal value in the uncorrelated random perturbation 

experiment, eventually settling in the 1.2-1.3 range. On the other hand, the results of the 

correlated-KPZ experiment show much better values, closer to one.   

The rank histogram (Fig.4) shows a comparison between the N(0,1) normal 

distribution (zero mean and unit variance), and the histogram of normalized innovations 

.  The observation operator is denoted H, and y is the 

observation vector. The N(0,1) distribution is plotted using a standard mathematical 

formula for the normal probability density function. Details of the inverse square-root 

matrix calculation can be found in Zupanski (2005). Although small deviations from the 

N(0,1) distribution can be expected due to the impact of weak nonlinearity of the 

shallow-water model, the rank histogram (Fig.4) suggests an under-estimation of error 

))(()( 2/1
a

T
f H xyHHPR −+ −
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covariance in the uncorrelated random perturbation method. To see this, note that if the 

forecast error covariance Pf is underestimated, the normalized innovations will be slightly 

larger, thus the innovation vector realizations further from 0 will be more abundant. Since 

the rank histogram is normalized by dividing the number of normalized innovations 

within a bin by the total number of innovation vectors, the histogram will indicate a 

larger spread, and thus a smaller maximum. Even in the uncorrelated random perturbation 

experiment, however, there are no significant outliers, meaning that ensembles are 

adequately covering the necessary range of perturbations (e.g., ensemble spread is 

adequate). Overall, the innovation vector statistics indicates a stable performance of the 

MLEF algorithm in both ensemble initiation experiments.   

A comparison of the impact of the uncorrelated-random and the correlated-KPZ 

ensemble initiation methods on the height analysis increment (e.g., analysis minus truth) 

is shown in Fig.5, during first several data assimilation cycles. Note that all plots in Fig.5 

have the same contour interval of 5 m. This is used in order to to better illustrate a 

dramatic reduction of the analysis error. It is clear that the correlated-KPZ experiment 

produces much smoother analysis increments, eventually resulting in superior 

performance. By cycle 5, the height analysis increments in correlated-KPZ experiment 

(Fig.5.b) are generally smaller than 5 m, with only few small areas with about 10 m. On 

the other hand, the analysis increments in the uncorrelated random initial perturbation 

experiment (Fig.5.a) are quite noisy, especially in the cycle 1. Nevertheless, it appears 

that the analysis increment noise is dramatically reduced in both experiments, suggesting 

a robustness of the data assimilation algorithm.  

 
4.2. Impact of decorrelation length  

 
Given the results of the previous subsection, it is interesting to learn how sensitive 

the correlated-KPZ results are to the choice of the length scale. The analysis RMS error 

results obtained using the uncorrelated-random (e.g., 0 km decorrelation length), and the 

correlated-KPZ method with decorrelation lengths of 1000 km, 4000 km, and 7000 km, 

are shown in Fig.6.  The errors indicate that, in this example, larger decorrelation lengths 

generally produce better analysis.  Most improvement is noted when the decorrelation 

length is increased in the range between 0 km and 4000 km. When increasing the length 
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from 4000 km to 7000 km, there is only a marginal improvement in first few cycles, the 

difference becoming negligible eventually. One can speculate that, in this case, the true 

analysis error covariance has characteristic length scales between 4000 km and 7000 km.   

As noted earlier, the RMS errors from experiments with different correlation 

length scales do not seem to converge to a common value, indicating a long lasting 

impact of the specification of the initial ensemble. In order to better understand this 

feature, a reference to recent results from the chaos theory is needed. Lorenzo et al. 

(2003) examined the system of coupled Lorenz chaotic cells, and found that the 

specification of the correlation length of perturbations has a nontrivial impact on the 

system predictability. In applications to one-dimensional coupled chaotic oscillators, 

Lopez et al. (2005) found that correlations of spatiotemporal perturbations developed in 

the system contain important information about the sub-leading Lyapunov exponents, and 

consequently impact the overall perturbation growth. This subject was further pursued 

and it was found (2005, Cristina Primo, private communication) that, for a dynamical 

systems with weak chaos, a specification of the spatial correlations of the initial 

perturbation can be felt for long time. In the case of a strong chaotic behavior of the 

system, the errors saturate quickly, and the impact of the initial spatial correlations is lost. 

The weakly-chaotic results are in general agreement with the behavior noticed in Figs.2 

and 6. Note that, in the case of a global shallow-water model with isolated mountain 

examined here, the system is effectively non-chaotic. The RMS error of perturbations 

(forecast minus truth) is not changing significantly in time, indicating a lack of instability 

and no noticeable error growth after couple of days. Thus, one would expect that the 

specification of the initial ensemble has a long-lasting impact in this case.  

On the other hand, if the ensemble amplitude is changed (e.g., standard deviation 

σz in Eqs. (2) and (3)), while keeping the initial correlations unchanged, the RMS error 

converges to a common asymptotic value. In Fig.7 the impact of the magnitude of the 

initial standard deviation is shown in the correlated-random experiment, with initially 

specified correlation length scale L=4000 km in all experiments. The standard deviation 

varies from 1 m to 10 m for height, and from 0.1  to 1 ms for winds, i.e. by one 

order of magnitude. Yet, in all experiments the analysis RMS errors quickly converge to 

1ms− 1−
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a common value. This is also in agreement with other ensemble data assimilation results 

(e.g., Whittaker et al., 2004; Zhang et al., 2004; Szunyogh et al., 2005).  

The above results suggest that the impact of the initial correlation length will 

depend on the strength of the chaotic behavior of a dynamical system. In application to 

realistic weather and climate models, as well as to simpler chaotic systems, this would 

imply a reduced sensitivity to initial correlations. However, poorly estimated initial error 

covariance, combined with a limited size of the ensemble and an inadequate 

observational coverage, could all contribute to ensemble data assimilation divergence, 

even before realistic correlations could be developed. Therefore, specification of the 

initial ensemble should be an important component of ensemble data assimilation. 

The beneficial impact of initial correlations also suggests that an improved 

ensemble data assimilation algorithm performance can be expected if the forecast error 

covariance structure is well known. This may be the case in operational numerical 

weather prediction (NWP) centers, or for forecast models with longer history of 

applications. If the correlation length scale is poorly known, however, one would expect a 

lesser benefit of correlated initial perturbations. This could happen when many control 

variables are involved, some with unreliable correlation length scales, such as the physics 

related variables (e.g., clouds and precipitation). However, the comparison between the 

uncorrelated random results and the correlated-random results for 1000 km length scale 

(Fig.6) suggests that even in those situations the use of the correlated-random and 

correlated-KPZ methods may be superior to the uncorrelated random method. This is a 

subject worth exploring in future realistic applications of the method.  
 
5. Summary and Conclusions 
  

Three methods for specification of the initial ensemble in ensemble data 

assimilation are presented, the uncorrelated-random, the correlated-random, and the 

correlated-KPZ method. The correlated-random and the correlated-KPZ algorithms 

consist of two steps: (i) creating uncorrelated random perturbations (spatially sparse in 

the case of  the KPZ equation), and (ii) imposing correlations of a chosen length scale on 

the perturbations. The implication is that the initial error covariance is more realistic, thus 

enabling the ensemble data assimilation to perform better, and achieve faster convergence 
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in terms of the analysis RMS error. The assimilation algorithm employed in the study is 

the MLEF, applied to assimilation of simulated observations using a global shallow-water 

model with zonal flow over an isolated mountain.  The presented ensemble initiation 

methods are directly applicable to other ensemble data assimilation algorithms.  

Results indicate a superior performance of ensemble data assimilation if the initial 

correlations are specified. This is confirmed by the analysis RMS scores, as well as by 

the innovation vector statistics. Sensitivity of the correlated ensemble initiation methods 

to the input correlation length parameter exists, but it is relatively small if a good estimate 

of the correlation length scale is known.  

Overall results indicate that the specification of the initial ensemble is an 

important component of an ensemble data assimilation algorithm. It was found that 

initially specified correlations can have a long-lasting impact, if the system is weakly 

chaotic. In the near future complex atmospheric models will be used, which are 

inherently more chaotic than the examined shallow-water model with zonal flow over an 

isolated mountain. This will allow further examination of the impact of initial 

correlations, extended to a stronger chaotic regime. A possible difficulty in future 

realistic applications is that some variables (e.g., pressure, temperature and winds) may 

have better known correlation statistics than microphysical variables (e.g., clouds and 

precipitation). Then, an important question is how to achieve an improvement in the 

context of multiple control variables with poorly known correlation statistics.  

A possible improvement of the correlated-KPZ method may be achieved by using 

the formulation of the KPZ equation with spatially correlated noise (e.g., Janssen et al. 

1999), such that the two algorithmic steps collapse into just one step. This is more 

appealing from the mathematical, as well as from the practical point of view, since the 

method would become algorithmically simpler.  At present, however, taking into account 

the algorithmic complexity of the correlated-KPZ method, the correlated-random method 

appear to be a more practical choice for ensemble initiation than the correlated-KPZ 

method. Hopefully, a focused research on the ensemble initiation methods will eventually 

lead to more robust ensemble data assimilation algorithms, important for future realistic 

applications.  

 17



Acknowledgments 

 

We would like to thank Dusanka Zupanski for many helpful discussions and 

careful reading of the manuscript. We would also like to thank two anonymous reviewers 

for their careful reviews which considerably improved the manuscript. Our gratitude is 

also extended to the National Center for Atmospheric Research, which is sponsored by 

the National Science Foundation, for the computing time used in this research. This work 

was supported by the National Science Foundation Collaboration in Mathematical 

Geosciences grant 0327651.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18



References 

 

Anderson, J. L. 2001: An ensemble adjustment Kalman filter for data assimilation. Mon.  

Wea. Rev., 129, 2884-2903. 

Anderson, J. L. 2003: A local least squares framework for ensemble filtering. Mon.  

Wea. Rev., 131, 634-642. 

Anderson, J. L., Wyman, B., Zhang, S. and Hoar, T. 2005: Assimilation of surface  

pressure observations using an ensemble filter in an idealized global atmospheric 

prediction system. J. Atmos. Sci., in press. 

Beccaria, M. and Curci, G. 1994: Numerical simulation of the Kardar-Parisi-Zhang  

 equation. Phys. Rev. E, 50, 4560-4563. 

Bishop, C., Etherton, B. J. and Majumdar, S. J. 2001: Adaptive sampling with the  

ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 

129, 420-436. 

Box, G. E. P. and Muller, M. E., 1958: A note on the generation of random normal  

 deviates. Ann. Math. Stat., 29, 610-611. 

Brasseur, P., Ballabrera, J. and Verron, J. 1999: Assimilation of altimetric data in the  

mid-latitude oceans using the SEEK filter with an eddy-resolving primitive 

equation model. J. Marine Sys., 22, 269-294. 

Dowell, D. C., Zhang, F., Wicker, L. J.,  Snyder, C. and Crook, N. A. 2004: Wind and  

Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: 

Ensemble Kalman Filter Experiments. Mon. Wea. Rev., 132, 1982-2005. 

Durran, D. R. 1991: The third-order Adams-Bashforth method: An attractive alternative  

 to leapfrog time differencing. Mon. Wea. Rev., 119, 702-720. 

Evensen, G. 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model  

using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 

10 143-10 162. 

Evensen, G. 2003: The Ensemble Kalman Filter: theoretical formulation and practical  

 implementation. Ocean Dynamics, 53, 343-367. 

Gaspari, G. and Cohn, S. E. 1999: Construction of correlation functions in two and three  

dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757. 

 19



Haltiner, G. J. and Williams, R. T. 1980: Numerical Prediction and Dynamic  

 Meteorology. Second ed., Wiley & Sons, 477 pp. 

Hamill, T.A., Snyder, C. and Whitaker, J. S. 2003: Ensemble forecasts and the properties  

of flow-dependent analysis-error covariance singular vectors. Mon. Wea. Rev., 

131, 1741-1758. 

Haugen, V. E. J. and Evensen, G. 2002: Assimilation of SLA and SST data into an 

 OGCM for the Indian Ocean. Ocean Dyn., 52, 133-151. 

Heikes, R. and Randall, D. A. 1995a: Numerical integration of the shallow-water  

equations on a twisted icosahedral grid. Part I: Basic design and results of tests. 

Mon. Wea. Rev., 123, 1862-1880. 

Heikes, R. and Randall, D. A. 1995b: Numerical integration of the shallow-water  

equations on a twisted icosahedral grid. Part II: A detailed description of the grid 

and an analysis of numerical accuracy. Mon. Wea. Rev., 123, 1881-1887. 

Houtekamer, P. L. and Mitchell, H. L. 1998: Data assimilation using an ensemble  

Kalman filter technique. Mon. Wea. Rev., 126, 796-811. 

Houtekamer, P. L. and Mitchell, H. L. 2001: A sequential ensemble Kalman filter for  

atmospheric data assimilation. Mon. Wea. Rev., 129, 123-137. 

Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L.,  

and Hansen, B. 2005: Atmospheric data assimilation with an ensemble Kalman 

filter: Results with real observations. Mon. Wea. Rev., 133, 604–620. 

Janssen, H. K., Tauber, U. C. and Frey, E. 1999: Exact results for the Kardar-Parisi- 

 Zhang equation with spatially correlated noise. Eur. Phys. J. B, 9, 491-511. 

Kardar, M., Parisi, G. and Zhang, Y. C. 1986: Phys. Rev. Lett., 56, 889. 

Keppenne, C. L. 2000: Data assimilation into a primitive-equation model with a parallel  

ensemble Kalman filter. Mon. Wea. Rev., 128, 1971-1981. 

Keppenne, C. L. and Rienecker, M. M. 2002: Initial testing of massively-parallel  

ensemble Kalman filter with the Poseidon isopycnal ocean general circulation 

model. Mon. Wea. Rev., 130, 2951-2965. 

Lermusiaux, P. F. J. and Robinson, A. R. 1999: Data assimilation via error subspace  

statistical estimation. Part I: Theory and schemes. Mon. Wea. Rev., 127, 1385-

1407. 

 20



Lopez, J. M., Primo, C., Rodriguez, M. A., and Szendro, I. G. 2005: Scaling properties of  

growing noninfinitesimal perturbations in space-time chaos. Phys. Rev. E, in 

press. 

Lorenzo, M. N., Santos, M. A., and Perez-Munuzuri, V. 2003: Spatiotemporal stochastic  

forcing effects in an ensemble consisting of arrays of diffusively coupled Lorenz 

cells. Chaos, 13, 913-920. 

Marinari, E., Pagnani, A., Parisi, G. and Racz, Z. 2002: Width distributions and the upper  

 critical dimension of Karadar-Parisi-Zhang interfaces. Phys. Rev. E, 65, 026136. 

Maunuksela, J., Myllys, M., Timonen, J., Alava, M. J. and Ala-Nissila, T. 1999: Kardar- 

Parisi-Zhang scaling in kinetic roughening of fire fronts. Physica A, 266, 372-376. 

Menard, R., Cohn, S. E., Chang, L.-P. and Lyster, P. M. 2000: Assimilation of  

stratospheric chemical tracer observations using a Kalman filter. Part I: 

Formulation. Mon. Wea. Rev., 128, 2654-2671. 

Mitchell, H. L., and Houtekamer, P. L., 2000: An adaptive ensemble Kalman filter. Mon.  

 Wea. Rev., 128, 416-433. 

Mitchell, H. L., and Houtekamer, P. L., 2002: Ensemble size, balance, and model-error  

 representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 2791-2808. 

Newman, T. J. and Bray, A. J. 1996: Strong-coupling behaviour in discrete Kardar-Parisi- 

 Zhang equations. J. Phys. A., 29, 7917-7928. 

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza,  M., Kalnay,  

E., Patil, D. J. and Yorke, J. A. 2004: A Local Ensemble Kalman Filter for 

Atmospheric Data Assimilation. Tellus, 56A, No. 4, 273-277. 

Pham, D. T., Verron, J. and Roubaud, M. C. 1998: A singular evolutive extended Kalman  

filter for data assimilation in oceanography. J. Marine Sys., 16, 323-340. 

Pikovsky, A. and Politi, A. 1998: Dynamic localization of Lyapunov vectors in  

 spacetime chaos. Nonlinearity, 11, 1049-1062. 

Reichle, R. H., McLaughlin, D. B. and Entekhabi, D. 2002a: Hydrologic data  

 assimilation with the Ensemble Kalman Filter. Mon. Wea. Rev., 130, 103-114. 

Reichle, R. H., Walker, J. P., Koster, R. D. and Houser, P. R. 2002b: Extended versus  

ensemble Kalman filtering for land data assimilation. J. Hydrometorology, 3, 728-

740. 

 21



Ringler, T. D. and Randall, D. A. 2002: A potential enstrophy and energy conserving  

numerical scheme for solution of the shallow-water equations on a geodesic grid. 

Mon. Wea. Rev., 130, 1397–1410. 

Snyder, C., and Zhang, F. 2003: Assimilation of simulated Doppler radar observations  

 with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677. 

Szunyogh, I., Kostelich, E. J., Gyarmati, G., Patil, D. J., Hunt, B. R., Kalnay, E., Ott, E.  

and Yorke, J. A. 2005: Assessing a local ensemble Kalman filter: Perfect model 

experiments with the NCEP global model”. Tellus 57A, in press. 

Verma, M. K. 2000: Intermittency exponents and energy spectrum of the Burgers and  

 KPZ equations with correlated noise. Physica A, 277, 359-388. 

van Leeuwen, P. J. 2001: An ensemble smoother with error estimates. Mon. Wea. Rev.,  

129, 709-728. 

Whitaker, J. S., and Hamill, T. M. 2002: Ensemble data assimilation without perturbed  

observations. Mon. Wea. Rev., 130,1913-1924. 

Whitaker, J. S., Compo, G. P., Wei, X. and Hamill, T. A. 2004: Reanalysis without 

radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 1190–1200. 

Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R. and Swartztrauber, P. N. 1992: A  

standard test set for numerical approximations to the shallow-water equations in 

spherical geometry. J. Comput. Phys., 102, 221-224. 

Zhang, F., Snyder, C. and Sun, J. 2004: Impacts of initial estimate and observation  

availability on convective-scale data assimilation with an ensemble Kalman filter. 

Mon. Wea. Rev., 132, 1238-1253. 

Zupanski, D. and Zupanski, M. 2005: Model error estimation employing ensemble data  

assimilation approach. Mon. Wea. Rev., in press.  

Zupanski, M. 2005: Maximum Likelihood Ensemble Filter: Theoretical Aspects.  

Mon.Wea.Rev., 133, 1710-1726.  

Zupanski, M., Zupanski, D., Vukicevic, T., Eis, K. and Vonder Haar, T. 2005: 

CIRA/CSU four-dimensional variational data assimilation system. Mon. Wea. 

Rev., 133, 829-843. 

 

 22



Figure Legends 

 

Fig.1. Perturbation vector obtained after integrating the KPZ equation over 200 non-

dimensional time steps: (a) without imposed correlations (solid line), and (b) correlations 

imposed with the length scale of 5 non-dimensional units (dotted line). The one-

dimensional integration domain contains 100 grid points.  

 

Fig.2.  Analysis RMS error for: (a) height (m), (b) east-west wind component ( ), and 

(c) north-south wind component ( ms ). The results are obtained using: (i) uncorrelated-

random method (thin solid line), (ii) correlated-random method (dashed line), and (iii) 

correlated-KPZ method (thick solid line). The observation error standard deviation is 

indicated by a dotted line.  

1ms−

1−

 

Fig.3. Innovation vector statistics illustrated by a χ2-test. The results are shown for: (i) 

uncorrelated-random method (dotted line), and (ii) correlated-KPZ method (solid line).  

 

Fig.4. Innovation vector statistics illustrated by a rank histogram of normalized 

innovations. The results are obtained using: (a) uncorrelated-random method, and (b) 

correlated-KPZ method.  The solid line represents the N(0,1) normal distribution. 

 

Fig.5. Height analysis increment (m) in the analysis cycles 1, 3, and 5, obtained using: (a) 

uncorrelated-random, and (b) correlated-KPZ methodology. The contour interval is 5 m. 

The continental lines are indicated only for perspective. 

 

 

Fig.6. Sensitvity of the analysis RMS errors to correlation length scale in the correlated-

KPZ method, for: (a) height (m), (b) east-west wind component ( ), and (c) north-

south wind component ( ). Shown results are for decorrelation lengths of: (i) 0 km 

(e.g., uncorrelated – dashed line), (ii) 1000 km (dotted line), (iii) 4000 km (thick solid 

line), and (iv) 7000 km (thin solid line). The results with correlation length of 4000 km 

are same as shown in Fig.2 for the correlated-KPZ results.  

1ms−

1ms−
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Fig.7. Sensitvity of the analysis RMS errors to the initial standard deviation (amplitude) 

in the correlated-random method, for: (a) height (m), (b) east-west wind component (ms-

1), and (c) north-south wind component (ms-1). Shown results are for the initial height 

standard deviations of: (i) 1 m (dotted line), (ii) 5 m (thick solid line), and (iii) 10 m (thin 

solid line), and for the initial wind standard deviations of: (i) 0.1  (dotted line), (ii) 

5 ms  (thick solid line), and (iii) 10  (thin solid line).  
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