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ABSTRACT

The ensemble size in sequential atmospheric ensemble based data assimilation using the
Heikes and Randall (1995a,b) global shallow-water model is reduced by projecting the
ensemble on a limited number of its leading EOFs. The ensemble size is determined by
retaining the modes containg the main directions of variability of the system (most en-
ergetic modes of the flow). The efficiency of this approach for adaptively updating the
ensemble size in the Maximum Likehood Ensemble Filter (MLEF) by Zupanski (2005),
Zupanski et al.( 2005) used for ensemble data assimilation is assessed for different frac-
tions of variability conserved and compared in terms of rms and similarity index error
indicators with the full ensemble run. An illustration of the feasibility and effectiveness
of the method is presented in framework of twin experiments for the above shallow water
model. A reduction of up to a factor of four in the number of members of the ensemble
was obtained, yielding comparable ensemble data assimilation (ENSDA) results with the
full ensemble run. This novel approach results in sizable computational resource economy
for general ensemble data assimilation methods.

1 Introduction

Practical implementation of the Kalman filter scheme is well known to be computationally very
expensive. To alleviate this issue two different approaches have been adopted in atmospheric and
ocean data assimilation community.

In general, physics of the system can be nonlinear, non-Gaussian, non-stationary therefore in
most practical situations, optimal nonlinear filters cannot be applied. Suboptimal approximations
can be made to nonlinear filters. Extended Kalman filter, multiple model filters as well as particle
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filters are some of the filters in this category. Optimal finite-dimensional Bayesian state estimation
in linear-Gaussian case, is the Kalman filter.

A first approach that employs sensible approximations is referred to as suboptimal scheme for
instance the one considered by (Todling and Cohn(1994) and Cohn and Todling(1996)). Since error
growth in regions of baroclinic or barotropic instability can be explained by leading singular vectors
see (Farrell(1989), Moore and Farrell(1993)) a number of suboptimal schemes has emerged based
on partial singular value decomposition which utilize a partial singular decomposition (SVD) of
the tangent linear dynamics between consecutive observation times and where the tangent linear
model is approximated by the leading part of its singular value decomposition. Such is the subop-
timal scheme proposed by Cohn and Todling (1996) which generalizes the partial singular value
decomposition filter to take more fully into account the dependence of the analysis error covariance
upon the observations (PEF). All these schemes can be viewed as low rank approximations of the
full Kalman filter (KF). An extensive summary of these suboptimal schemes is provided in Todling
et al. (1998) including the partial eigendecomposition filter (PEF) and partial singular-value de-
composition retrospective analysis (PSRA/PSRA2) where they employed singular values/vectors
of the propagator or eigenvalues/vectors of the error covariances.

A similar approach to the above suboptimal schemes using modified EOF’s ( MEOF) in a
reduced state KF for carrying out data assimilation via a reduced state Kalman filter was illustrated
by Cane et al. (1996) which retained only 93 MEOF’s while keeping 99 % of the explained variance.
They obtained very satisfactory results pointing out that even retaining a much lower number
of MEOF’s would have achieved practically the same results. Recently Hoteit and Pham.(2004)
extended some of these ideas to reduced-state space in adaptively reduced-order extended Kalman
filter. See also Fukumori and Malanotte-Rizzoli (1995).

The work of Farrell and Ioannou (2001) also provides for a reduced order Kalman filter based on
balanced truncation which was applied to a time dependent Lyapunov unstable quasi-geostrophic
model of the forecast tangent linear error system reducing the autonomous forecast error model of
order 400 to order 60. Similar ideas were put forward in the work by Heemink et al. (1997) and
Verlaan and Heemink (1995,1997).

The second approach aimed at alleviating the computational cost of KF is the ensemble Kalman
filter (EnKF) put forward by Evensen (1994). With the advent of ensemble Kalman filter introduced
by Evensen (1994), Evensen (2003) the issue of choosing the relevant number of ensemble members
for an adequate data assimilation performance is still open. However we know that the ensemble
converges like the square root of the number of its members.

Heemink et al. (2001) proposed to combine the EnKF with the reduced-rank approach to reduce
the statistical error of the ensemble filter. This is known as variance reduction, referring to the
variance of the statistical error of the ensemble approach. Their ensemble filter algorithm consists
of two parts: q ensembles in the direction of the q leading eigenvalues of the covariance matrix
and N randomly chosen ensembles. In the algorithm, only the projection of the random ensemble
members orthogonal to the first ensemble members plus the new random perturbations are used to
obtain the filter gain and the state estimate. They call this a partially orthogonal ensemble Kalman
filter (POEnKF).

The only errors that can be reduced by the observations are those lying in the manifold spanned
by the approximate low rank error covariance matrices. Bishop et al.(2001) introduced a suboptimal



Kalman filter called the ensemble transform Kalman filter by transforming ensemble perturbations
into orthonormal vectors and by attaching variances to each of the direction vectors to describe
error covariance within the vector subspace of the ensemble perturbations. ETKF became a wide
spread tool for using it in adaptive observations and targeting experiments at several operational
weather prediction centers (Bishop et al. (2001), Wang and Bishop (2003) and Etherthon and
Bishop (2004))

The present paper aims at introducing a method for adaptively reducing the KF/MLEF ensem-
ble size in data assimilation using a Karhounen-Loeve expansion using the full ensemble to generate
specific model evaluations (snapshots) from which we extract patterns (EOFs). It is important to
stress that each snapshot is an ensemble member. In past approaches, similar concepts were intro-
duced, a projection on leading SVD was used in reduced rank suboptimal Kalman filters by the
aforementioned research works in data assimilation.

However to the best knowledge of the authors the present work is the first application for
adaptively reducing ensemble size based on Proper Orthogonal Decomposition (POD).For recent
reviews of POD method see Rowley et al. (2003) and Rowley (2005).

Implications of the size reduction methodology to the enrichment of ensembles are also addressed
since in some instances we may want more ensembles(due to model errors, system complexity , etc.)

Options for ensemble enrichment when the reduction in ensemble size does not go in parallel
with the decrease in RMS are also considered. One option is to rerun the procedure at the previous
cycle with an increased retained variance percentage criteria which results in a smaller reduction
in ensemble size and similarity index with corresponding increase in computational time.

Another option considered is to enrich the number of snapshots (ensemble members) with a
number of randomized and initialized ensembles. All these options will be considered in a follow-up
work.

Additional possibilities exist to extend the presented ensemble reduction methodology. One
way would be to utilize it in initiation of small size regional ensembles from larger number of
global ensembles. Similarly, the same ensemble reduction methodology can be used in a multi-
model ensemble context to reduce the ensemble size from other sources to a desired small ensemble
size. The various possibilities for ensemble enrichment come only as a consequence of the described
ensemble reduction method. All these options have important practical implications.

Then our procedure can serve as an adaptive method for both ensemble size inflation and
reduction however our main aim in the present work is to reduce rather than inflate the ensemble
size without loss of accuracy.These options will be investigated in a follow-up work.( See also work
of Ravindran(2002) and Fahl(2000))

POD has been applied to fluid problems by Sirovich (1987) using an SVD basis and other
researchers Berkooz et al (1993) to understand the important dynamical features or coherent struc-
tures seen in fluid flows and has since then been applied in all domains of science.

It has since become the subject of multiple research efforts in fluid dynamics, chemistry ,
turbulence, hydrological processes and image processing ( see Vermeulen et al. (2004)).

An ensemble based data assimilation Zupanski (2005), named Maximum Likelihood Ensemble
Filter(MLEF), is employed in this study. The analysis solution maximizes the likelihood of the
posterior probability distribution, obtained by minimization of a cost function that depends on a
general nonlinear observation operator.



The MLEF employs the ETKF transformation in Hessian preconditioning. Therefore, one could
view the MLEF as a maximum likelihood approach to ETKF. In fact, the size reduction approach
is facilitated using that transform.

The paper does not address the issue of adaptive observations. It is organized as follows. In the
second section the governing equations of the spherical shallow-water model employed and their
discretization are briefly discussed. In the third section, Proper Orthogonal Decomposition (POD)
method is presented. The POD method describes the system behavior as an attractor which is a
point of evolution for the state space in a subspace of higher dimensions. Numerical results in a
twin experiment set-up are discussed in section 4 and the paper concludes with a summary and
conclusions section.



2 Governing Equations and Discretization

The shallow water equations have been used customarily to develop new numerical methods
for atmospheric models because they exhibit the same wave behavior as more complex baroclinic
equations governing the motion of the atmosphere.

The nonlinear shallow-water equations on the sphere assume here the form given in Ringler and
Randall (2002a)

∂

∂t
V = − (f + ζ)k × V −∇[K + g(h + hs)], (1)

∂

∂t
h = −∇.(hV ). (2)

Here V is the horizontal velocity vector, ζ is the relative vorticity, f is the Coriolis parameter,
g is the gravitational constant, K is the kinetic energy, h is the fluid depth, and hs is the surface
topography. Alternatively, we can take the curl and divergence of eqn. 1 and 2 to generate equations
for vorticity and divergence:

∂η

∂t
= −∇.(ηV ), (3)

∂δ

∂t
= − k.∇× (ηV )−∇2[K + g(h + hs)]. (4)

Here η ≡ f + ζ and δ ≡ ∇.V is the divergence. The vector momentum formulation and the
vorticity-divergence formulation are equivalent given the appropriate boundary conditions. The
discrete form of the scalar formulation bears a resemblance to the continuous form.

∂ηi

∂t
= − [∇.η̄Vc]i, (5)

∂δi

∂t
= [k∇× (η̄Vc)]i − {∇2[K + g(h + hs)]}i. (6)

The subscript c denotes quantities defined at the cell corners, while the subscript i denotes
quantities defined at grid-cell centers. An overbar denotes quantities that are averaged from cell
centers to the cell corners. The prognostic variables vorticity, divergence, and mass are all defined
at the grid-cell centers; this is the Z grid introduced by Ringler and Randall (1994).

While the continuous equations allow an infinite number of quantities to be conserved, this is
not possible within the discrete system. The form of total energy that is conserved in this discrete
system Ringler and Randall (2002b) is

n∑

i=0

Ai{hi[Ki + g(hs +
1

2
hi]} (7)

which is consistent with the continuous shallow-water equations, where g is the gravitational



constant, Ki is the kinetic energy, hi is the fluid depth, hs is the surface topography and Ai is the
area for each discrete cell.

3 Empirical orthogonal functions and proper orthogonal decomposition

The underlying problem we address is that of identifying the φ sought structure in a random
vector field. It is then natural to look for functions φ for which the inner product (zi,φ) exists,
i.e. φ must be L2(Ω).Given an ensemble of random vector fields zi, a function of φ which has a
structure typical of the members of the ensemble is sought. In order to resolve this problem, we can
try to project the ensemble on φ, i.e. (zi,φ) so that φ is nearly parallel as possible. The aim is to
maximize (zi,φ) while removing the amplitude by normalizing it. In order to include the statistics,
we must maximize the expression

(φ, zi)

(φ,φ)
1
2

(8)

in some average sense. We consider the initial ensemble members each of which are viewed as
”snapshots”.

S = {zi : 1 ≤ i ≤ N} (9)

are solutions of N different ensembles and a function of φ ∈ L2(Ω) that gives the best representation
of S in the sense that it maximizes

1

N

N∑

i=1

|(zi,φ)|2
(φ,φ)

(10)

A proper orthogonal decomposition method (POD) computes these coherent spatial structures
directly and in an optimal sense. The structures computed are optimal for a given data set (see
Sirovich (1987) and Berkooz et al (1993)). The proper orthogonal decomposition method is a well
known analysis technique with the original concept traced to Pearson (1901) . Several different
names including principal component analysis, Karhounen-Loève decomposition and total-least-
squares estimation refer to the same procedure.

We are therefore trying to maximize

1

N

N∑

i=1

|(zi,φ)|2
(φ,φ)

=
(Kφ,φ)

(φ,φ)
= λ (11)

where N stands for the number of ensemble solutions. This leads to

(Kφ,φ) = λ(φ, φ) (12)

The corresponding eigenvalue problem is to find the eigenvalues and eigenfunctions of a sym-
metric M ×M matrix defined by K = 1

n
〈z,zT 〉 or

∫
Ω Kdx in L2(Ω). In other words one seeks a



function which has the largest mean square projection on the set S. Here we consider the snapshot
vectors zi and determine the empirical eigenfunctions φ as a linear combination of the snapshots
given by

φ =
N∑

i=1

αzi (13)

such that equation (12) holds.
In this case, the practical approach for calculating the correlation function is not to determine the

M ×M correlation matrix but to use the dual approach on the N snapshots which are individual
ensembles in this study (Sirovich (1987) ). This method is also known as sample space setting
Preisendofer (1988). The aim is to reduce the space resolution size to ensemble space size by
substituting equation (13) to equation (12). The corresponding eigenvalue problem is then to find
the eigenvalues and eigenfunctions of a symmetric N×N correlation matrix defined by C = 1

n
〈zT ,z〉

or
∫
Ω Cdx in L2(Ω)

(Cα,α) = λ(α,α) (14)

The POD basis of this eigenvalue problem is orthonormal, i.e., φT
i φj = 0 for i = j and

φT
i φi = 1. Since the trace of the matrix C can represent the total variance (averaged energy

retained if C is redefined for energy) in the snapshots, the variance corresponding to the ensemble
data is the sum of the eigenvalues of the correlation matrix, in the sense that

E =
∑

i=1

λi. (15)

A variance percentage can be assigned to each eigenvector based on the eigenvalue associated with
the eigenvector, such that

Ek =
λk

E
(16)

Under the assumption that the eigenvalues are arranged in descending order from the largest to
the smallest, then we have an ordering of the eigenvectors from largest variance to lowest variance.
This will provide us the criteria to define the ensemble size adaptively based on percentage of
variance retained.

Equivalently, this can be thought of as damped singular value decomposition (SVD) solution in
which filter factors of zero are used for basis vectors associated with smaller singular values. The
most common approach to regularization of numerically rank-deficient problems is to consider the
given matrix C as a noisy representation of numerically rank-deficient matrix, and to replace C by
a matrix that is close to C and mathematically rank deficient Hansen (1997).

Let C = UΣV T denote the SVD of C and λi the i-th largest eigenvalue of C. then σ2
i = n λi

for i = 1, ..., n, where σi the i-th singular value of C Volkwein(2004). Using this relation, we can
use related Truncated SVD ( TSVD) to POD. As a result a C matrix that does not appeal to energy



criteria can be used to truncate the smaller singular values Hansen(1997). It should be noted that
φ = U

The quality of a given cycle ensemble relative to the previous cycle can be judged by the extent
to which it preserves the value of the direction of perturbations from previous cycle. This can be
used to assess the quality of reduction compared to full-sized ensemble.

To assess the quality of a C matrix in addition to RMS criteria that is produced at the end of
each cycle, a similarity matrix (see Buizza (1994), Li et al (2005) and Serban et al (2005)) can be
constructed whose entries

mij = 〈φ, φ̃〉2 (17)

are the squared scalar products of the i-th SV of the full model and the j-th SV of the reduced
model. These entries represent the amount of variance of the i-th full model SV that can be explained
by the j-th reduced model SV. Here the reduced model will be the current cycle while the full model
will be the previous cycle. Based on the matrix mij, a similarity index can be defined as

SM =
1

N

N∑

i,j=1

mij (18)

SM index take values between 0 and 1 and for identical models, it will equal unity.
The RMS may not necessarily decrease with the ensemble size for a given variance percentage

criteria defined earlier even though this is not likely given the numerical results. The algorithm
must also include ensemble enrichment if the reduction in ensemble size does not go in parallel
with the decrease in RMS. One option is to rerun the cycle with an increased variance percentage
criteria which might result in a smaller reduction in ensemble size and similarity index with an
increase in computational time. Another way will be to increase the correlation length of the C
matrix along with a new update of the system by ensemble initialization (see Zupanski et al. 2005).
This method can serve as adaptive method for both ensemble size inflation and reduction however
our main aim should be to reduce rather than inflate the ensemble size without loss of accuracy.
C matrix of the full previous run can be enriched by using correlated ensemble initialization (see
Zupanski et al. 2005 ) if an increase in RMS is observed.

3.1 Adaptive ensemble size reduction and preconditioning algorithm

• Step1: Generate the ensemble zi.

• Step2: Generate the covariance matrix C = 1
n
〈ziT ,zi〉 or the correlation energy matrix and

define energy by the new variables z =
∑n

i=0 Ai{hi[Ki + g(hs + 1
2
hi]}, and

∫
Ω Cdx.

• Step3: Solve the eigenvalue problem C α(k) = λkα
(k).

• Step4: Calculate variance E =
∑

i=1 λi.
• Step5: Decide on the amount of variance retained Ek = λk

E
reduce the ensemble size accord-

ingly based on the dominant eigenvalues retained.
• Step6: Check the performance of ensemble reduction SM = 1

N

∑N
i,j=1 mij if SM close to

unity and if RMS decreases then continue reduction else,
Step 6a: Rerun the procedure at the previous cycle with an increased retained variance percentage



criteria else,
Step 6b: Reset the new ensemble size from the previous iterations by using extended Proper Or-
thogonal Decomposition else,
Step 6c: Use zi matrix from previous cycle to initialize the next cycle by zi by running ensemble
data initialization (See Zupanski et al. 2005) for one cycle.
• Step7: Update the preconditioner x− xk−1 = P f (I + C)−T/2 ζ Zupanski (2005), Zupanski

et al. 2005).

4 Experiments and Results

The initial conditions for the global shallow-water equation models employ one of the test-cases
in Williamson et al. (1992) corresponding to a geostrophically-balanced zonal flow over an isolated
conical mountain with strong nonlinearity occurring in the vicinity of the mountain. This set-up is
characterized by the excitation of Rossby and gravity waves. The initial zonal flow is 20m/s, and
the mountain is centered at 30ON,90OW, with the height of 2000m.

All the experiments use as initial full-ensemble one that consists of 1000 ensemble members. A
smaller ensemble size could have been used and this number was chosen for comparison sake.

An unstructured finite-difference mesh was employed whose total number of points-variables
(degrees of freedom) is 12802. It includes about 2600 height points, and about 5100 points for
each wind component of freedom. The assimilation is performed over an interval of 120 hours
which corresponds to 40 cycles of data assimilation, each comprised of a 3-hour interval. The initial
conditions for the experimental run are as defined above, but shifted to -6 hours in order to create
a set of unbalanced initial conditions.

The observations are created by adding random perturbations from a normal (Gaussian) dis-
tribution N(0,R) to a model forecast, which we refer to as the truth. This implies a perfect model
assumption, since the same model is used in assimilation. Although the model equations formally
predict the velocity potential and the stream function, more conventional wind observations are
created, and later assimilated. The observation error covariance R is assumed to be diagonal, i.e.
no correlation between observations is assumed. The observation error chosen for the height is 5
m, and for the wind is 0.5ms. There are 1025 observations defined in each analysis cycle, uniformly
distributed around the globe. These observations consist of approximately 500 height observations,
and 500 wind observations. Since the two wind components (east-west and north-south) are co-
located, there is approximately 250 observation points for each wind component. The observations
are assimilated every six hours.

Numerical experiments are conducted by comparing RMS height analysis (as well as u and v
RMS ,not shown) as well as an error measure (the similarity index SM) for the two set of ensembles
tested, namely the adaptively reduced and the full size ensembles, respectively.

Different numerical experiments were conducted differing only in the stage at which the adaptive
ensemble reduction is being started, i.e. after either 1, 20, 30 or 40 cycles of the full ensemble run.
Based on recently acquired experience in application of reduced order 4-D Var (Robert et al. 2005)
we expect a result pointing to the fact that choosing the snapshots from a full assimilation time
interval trajectory would yield better results for the adaptively reduced ensemble than if it were to
start with a non-assimilated trajectory.



The algorithm used allows the adaptive reduction algorithm to be started from any cycle of
the full ensemble run. The different numerical tests of starting the adaptive reduction algorithm at
different stages( or number of cycles) of a full ensemble run provide a rigorous test of this procedure
and allow a more in-depth understanding and validation of the procedure.

The information displayed in the following figures is comprised of the following information:
a) Cycle number of full ensemble run where the adaptively reduced ensemble procedure is

initiated.
b) Percentage of variance explained (two cases of 95 % and 99 % explained variance were chosen

for the sake of simplicity).
c) Reduction in the number of ensemble members obtained as a result of applying the adaptive

reduced ensemble algorithm.
d) The numerical results then display either the RMS of the full ensemble versus that of the

adaptively reduced ensemble as a function of the number of cycles, or the similarity index criterion
(explained above in the previous section), for the same two ensemble sets.

Fig 1.displays the isoline global plot of the height analysis RMS error for both the full ensemble
(1000 members) as well as for the adaptively reduced ensemble between cycles 12 and 13 of the
MLEF filter whose size decreases from 380 to 280 members for explained variance of 95 %. The
global shallow water equations model was run for initial conditions consisting of test case 5 of
Williamson et al. (1992) describing zonal flow over an isolated conical mountain.

Fig 2 displays the height analysis for same model and initial conditions running MLEF full
ensemble for cycle 13 ( 1000 members) along with the adaptively reduced ensemble (280 members)
for same MLEF filter cycle and for explained variance of 95 %.

Fig. 3 displays the isoline height analysis RMS error difference fields of the adaptively reduced
ensemble minus full ensemble for the same abovementioned initial conditions at 3 consecutive MLEF
filter cycles ( Cycle 12-cycle 14). The results were scaled to appear 10 times larger for illustration
purposes.The results are displayed on the global earth domain and the difference height analysis
RMS errors are of the order of a maximum of 2 meters. This for explained variance of 95 %.

Fig 4 shows in three vertical columns, the RMS height analysis, the similarity index criterion
and the evolution of ensemble size for an explained variance of 99% , respectively.

The first column of the figure shows that the height RMS for case (1-40) i.e where adaptively
reduced ensemble starts at cycle 1, yields the worst results, whereas as we increase the cycle number
where adaptively reduced ensemble is initiated, the RMS error of the adaptively reduced ensemble
dramatically decreases and is very similar to the one obtained with a full ensemble run.

Remark: We could improve the height RMS analysis results for the reduced ensemble by in-
creasing the percentage of variance explained as a criterion for the adaptive ensemble reduction.
(for instance going to an explained variance of 99.5% versus one of 99%).

The results for 10-40, 20-40 and 30-40 i.e. for the adaptively reduced ensemble starting at
cycle 10, 20 or 30 of the full ensemble run respectively show dramatic improvement in the RMS
error compared with that of the full ensemble run as the adaptively reduced ensemble procedure is
initiated at later stages of the MLEF full ensemble data assimilation.

The second column displays the similarity index measure between 2 subsequent cycles of both
the full ensemble run and the adaptively reduced runs, respectively. When the adaptive reduced
ensemble is activated at a given cycle of the full ensemble run we observe a dip in the similarity



index plot that recovers after 3-4 cycles. This dip occurs at exactly the cycle number where the
adaptive reduced ensemble is first introduced.

The similarity index provides a criterion related to the performance of the full ensemble run
versus the adaptive ensemble run.

Finally the third column in the composite figure displays the corresponding reduction in the
ensemble size versus the cycles (time) when the adaptive reduced ensemble procedure is initiated
at different cycle numbers of the full MLEF ensemble run.

The reduced ensemble size is changing in the experiments 1-40, 10-40, etc. namely the ensemble
size tends to some constant value which assumes a lower value as the stage at which adaptive
reduction is initiated is occuring later in the data assimilation cycle. The limiting ensemble size in
each of the above four experiments is 700, 480, 424 and 416 respectively.

For a given percentage of variance explained the adaptively reduced ensemble contains pertinent
information on the variability of the full ensemble. As shown also in Fig 5 some ensemble members
do not contribute information during later cycles of full ensemble MFLEF filter data assimilation
or in other words that the variability of the system can be described by a lower dimensional space.

Fig 5 displays the magnitude of the eigenvalues of the matrix C as a function of the number of
spectrum modes for the different cycles in the full MLEF ensemble run and the adaptively reduced
runs scaled by the largest eigenvalue of C at each consecutive cycle. This for explained variance of
99 %.

As the MLEF assimilation filter cycle number increases, the scaled magnitude of the eigenvalues
of C decreases respectively - exhibiting a rank reduction of matrix C as the assimilation process
proceeds. This justifies the use of the adaptively reduced ensemble procedure since as number of
cycles in full ensemble run increases- an increasing number of modes in spectrum of C tend to
zero, i.e. there are more ensemble members that do not contribute information to the MLEF filter
assimilation.

The computational economy realized using adaptively reduced ensemble for cases where the
RMS height analysis difference error is small compared to that of the full ensemble run exhibits a
factor of 2-3 economy in CPU time( corresponding roughly with a factor of 2-4 reduction of the
number of ensemble members for the adaptively reduced ensemble).

In all the experiments with both full ensemble and reduced ensemble runs the number of ob-
servations is identical.

5 Summary and Conclusions

A novel adaptive methodology for reducing ensemble size by projecting the ensemble on a
limited number of its leading EOFs was successfully applied in the framework of MLEF for data
assimilation.

The methodology is general enough to be applied and extended to general ensemble filter data
assimilation techniques such as EnKF and its various flavors.

A test case was run in the framework of twin experiments for a global shallow water equations
model ( Randall et al. 1995) using a typical relevant test case taken from the suite of Williamson
(1992) (the mountain test case) test cases.

The idea used here originates in reduced order modeling theory as well as in regularization theory



(Tikhonov regularization in particular) and allows a sizable economy in application of ensemble
methods for data assimilation, resulting typically in a reduction of up to a factor of four in the
number of members of ensemble required for successful implementation.

Numerical experiments conducted in above MLEF framework of twin experiments validate that
the adaptive reduction in ensemble size , assessed for different fractions of variability conserved( in
the range of 95 % to 99.9 %) and compared in terms of RMS and similarity index error indicators as
well as in terms of impact of resulting assimilated geopotential and velocity fields only marginally
affects results obtained when compared to the results of the full ensemble run .This was illustrated
by comparing differences in geopotential and velocity fields between the full and adaptively reduced
ensembles. This is further explained by considering the spectrum of eigenvalues of the matrix C in
the MLEF ensemble filter.

A discussion was presented related to the impact of using the adaptively reduced ensemble and
generalization of our results to sequential ensemble data assimilation in general.

The goal is not necessarily to reduce, or enlarge the ensemble size, rather to find an optimal
utilization of ensembles, given the computing limitations and the complexity of the problem. In
that sense, the reduction is an important part of the whole picture. Once we know why, and how
to do that, we can come up with enrichment strategy (e.g., resampling), if deemed relevant for the
modeling-observation system we use.

Coremmelin and Majda(2004) pointed out to some limitations of EOFs in particular for systems
that exhibit sudden transitions between different states (i.e., bursting behavior) . While our test
case and in general short period atmospheric circulation do not have such behavior, this limitation
should be borne in mind and other optimal bases such as principal interaction patterns (PIPs)
should then be considered.

Future research will be aimed at applying the adaptive ensemble size reduction to non-Gaussian
ensembles as well as extending the present methodology to typical EnKF data assimilation with
realistic models.

Aspects of increasing the adaptively reduced ensemble size when dictated by criteria of increase
in RMS error will be investigated in a follow-up work by returning to a previous cycle and adding
freshly randomized ensemble members.

For ensemble size inflation, the computed eigensets derived from snapshots( members) of the
ensemble depend on the initial and final portions of the ensemble set under consideration. For
this purpose the POD method can be extended as described by Glezer et al (1989), Uzunoglu et
al (2002) and Tan et al (2001). For statistically stationary data, the extended POD(EPOD) is
equivalent to the classical POD. For ensemble enrichment by ensemble size inflation, the reduced
ensemble model can be inflated using the ensemble generated by the filter at previous cycles. The
possibility to carry out hybrid runs of adaptively reduced ensemble followed by performing a few
cycles with a full ensemble size at the end of the reduced ensemble assimilation will be considered
in future research work.

A comparison of our results with results obtained by reduced-order 4-D Var data assimilation
Hoteit et al., (2003) and Robert et al. (2005) is also considered as a follow-up effort.

We emphasize that the adaptive reduced ensemble methodology (and MLEF, as well as ETKF)
are well suited to handle efficiently large number of observations.

Sizable reduction in the computational load of ensemble simulations is possible by extending



this approach of adaptive ensemble size reduction to realistic context operational EnKF runs in
3-D .(See Houtekamer et al.2005).
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• Figure 1 RMS error isolines of height field analysis scaled 10 times larger for plotting. Initial
conditions using Williamson et al. (1992) test case 5 ,i.e. zonal flow over an isolated conical moun-
tain. Full ensemble (left column) and reduced ensemble with 95 % variance retained(right column)
for (a) Cycle 24; Full ensemble size, 1000 members (b) Cycle 24; Reduced ensemble size, 380 mem-
bers and (c) Cycle 26; Full ensemble size, 1000 members and (d) Cycle 26; Reduced ensemble size
280 members, respectively.
• Figure 2 Isolines of height field analysis of Williamson et al. (1992) test case 5 ,i.e. zonal flow

over an isolated conical mountain for (a) full ensemble,comprised of 1000 members and (b) reduced
ensemble, comprised of 280 members for cycle 26 of the MLEF data assimilation.
• Figure 3 RMS error isolines of height analysis difference fields between reduced ensemble and

full ensemble runs for cycle (a) 24 (b) 26 (c) 28 with retained variance of 95 %. The results are
scaled 10 times larger for plotting. Initial conditions using Williamson et al. (1992) test case 5 ,i.e.
zonal flow over an isolated conical mountain.
• Figure 4 Column A illustrates the evolution of height field RMS error for full and reduced

ensembles as a function of the MLEF cycle where adaptive ensemble reduction is initiated from 1-st
, 10-th, 20-th and 30-th cycle of the full MLEF ensemble run consisting of 40 cycles respectively,
for an explained variance of 99 %.

Column B illustrates the evolution of the similarity index for full and reduced ensembles where
adaptive ensemble reduction is initiated from 1-st , 10-th, 20-th and 30-th cycle of the full ensemble
MLEF cycle, respectively, for an explained variance of 99 %.

Column C illustrates the evolution of the ensemble size of the reduced ensembles where adaptive
ensemble reduction is initiated from 1-st , 10-th, 20-th and 30-th of the full ensemble MLEF cycle,
respectively, for an explained variance of 99 %.
• Figure 5 Magnitude of the eigenvalue spectrum of the C matrix versus the total number

of modes for each analysis cycle from cycle 2-28, for a retained variance of 99 %, where adaptive
ensemble reduction is initiated from 1-st , 10-th, 20-th and 30-th cycle of the full MLEF ensemble
run consisting of 40 cycles, respectively. (a) Full Ensemble (b) Reduced Ensemble



Full Ensemble (Left Column) and Reduced Ensemble (Right Column)

(a) Cycle24; Ensemble Size 1000 (b) Cycle24; Ensemble Size 380

(c) Cycle26; Ensemble Size 1000 (d) Cycle26; Ensemble Size 280

Figure 1. RMS error isolines of height field analysis scaled 10 times larger for plotting. Initial conditions using Williamson et al. (1992)
test case 5 ,i.e. zonal flow over an isolated conical mountain. Full ensemble (left column) and reduced ensemble with 95 % variance
retained(right column) for (a) Cycle 24; Full ensemble size, 1000 members (b) Cycle 24; Reduced ensemble size, 380 members and (c)
Cycle 26; Full ensemble size, 1000 members and (d) Cycle 26; Reduced ensemble size 280 members, respectively.



(a) Full ensemble for cycle26; Ensemble Size 1000 (b) Reduced ensemble for cycle26; Ensemble Size 280

Figure 2. Isolines of height field analysis of Williamson et al. (1992) test case 5 ,i.e. zonal flow over an isolated conical mountain for
(a) full ensemble,comprised of 1000 members and (b) reduced ensemble, comprised of 280 members for cycle 26 of the MLEF data
assimilation with 95 % variance retained.



(a) Cycle 24

(b) Cycle 26

(c) Cycle 28

Figure 3. RMS error isolines of height analysis difference fields between reduced ensemble and full ensemble runs for cycle (a) 24 (b)
26 (c) 28 with retained variance of 95 %. The results are scaled 10 times larger for plotting. Initial conditions using Williamson et al.
(1992) test case 5 ,i.e. zonal flow over an isolated conical mountain.



Column A: height field RMS error Column B: evolution of the similarity index Column C: evolution of the ensemble size
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Figure 4. Column A illustrates the evolution of height field RMS error for full and reduced ensembles as a function of the MLEF cycle
where adaptive ensemble reduction is initiated from 1-st , 10-th, 20-th and 30-th cycle of the full MLEF ensemble run consisting of 40
cycles respectively, for an explained variance of 99 %. Column B illustrates the evolution of the similarity index for full and reduced
ensembles where adaptive ensemble reduction is initiated from 1-st , 10-th, 20-th and 30-th cycle of the full ensemble MLEF cycle,
respectively, for an explained variance of 99 %. Column C illustrates the evolution of the ensemble size of the reduced ensembles where
adaptive ensemble reduction is initiated from 1-st , 10-th, 20-th and 30-th of the full ensemble MLEF cycle, respectively, for an explained
variance of 99 %.
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(a) Full ensemble versus reduced ensemble Cycles 1-40.
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(b) Full ensemble versus reduced ensemble Cycles 10-40:
Note except cycles 20-30, all cycles coincide.
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(c) Full ensemble versus reduced ensemble Cycles 20-40:
Note except cycle 30, all cycles coincide.
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(d) Full ensemble versus reduced ensemble Cycles 30-40:
Note except cycle 30, all cycles coincide.

Figure 5. Magnitude of the eigenvalue spectrum of the C matrix versus the total number of modes for each analysis cycle from cycle
1-40, for a retained variance of 99 %, where adaptive ensemble reduction is initiated from (a) 1-st , (b) 10-th, (c) 20-th and (d) 30-th
cycle of the full MLEF ensemble run consisting of 40 cycles


