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Abstract

Flow in the world’s oceans occurs at a wide range of spatial scales, from micro-metres
to mega-metres. In particular, regions of intense flow are often highly localised, for
example, western boundary currents, equatorial jets and the Antarctic Circumpo-
lar Current. Conventional numerical ocean models generally use static meshes. The
use of dynamically-adaptive meshes has many potential advantages but needs to be
guided by an error measure reflecting the underlying physics. A method of defining
an error measure to guide an adaptive meshing algorithm for unstructured tetra-
hedral finite elements, utilizing an adjoint or goal-based method is described here.
This method is based upon a functional, encompassing important features of the
flow structure. The sensitivity of this functional, with respect to the solution vari-
ables, is used as the basis from which an error measure is derived. This error measure
acts to predict those areas of the domain where resolution should be changed. A
barotropic wind driven gyre problem is used to demonstrate the capabilities of the
method. The overall objective of this work is to develop robust error measures for
use in an oceanographic context which will ensure areas of fine mesh resolution are
used only where and when they are required.
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Among the smaller scale flows in the world’s oceans are those associated with abrupt
topographic features, such as the continental shelf break, which has a scale of the
order of 10km, and tall isolated seamounts, which have a horizontal order of 20km.
Western boundary currents have a typical width of 50km and are strongly influenced
by topography, whereas convective plumes have a scale of the order of 100m. On
the other hand, horizontal flow in the ocean basins is of the order of 1000km. These
differences in scale produce challenges in numerical modelling. At present, models
exist for the large-scale circulation and for oceanic flows and processes at smaller
scales, but none which can simultaneously resolve the full range of pertinent scales.

Conventional numerical ocean models generally use uniformly spaced finite-
differences to discretize the governing equations. The finite-element model described
in Ford et al. (2004) has been generalised to allow the mesh to evolve to better resolve
regions of intense flow where increased resolution is required. Coarser resolution can
be used in other areas of the flow domain. The eventual aim of the work is: to ex-
ploit the use of unstructured dynamically adapting meshes in both the horizontal
and vertical; to utilize the geometric flexibility of the mesh to conform well to both
topography and coastlines; and to allow the variable mesh resolution to capture and
optimally resolve the fluid flow at an intermediate point in time between consecutive
‘adaptations’ of the mesh.

Use of a dynamically adapting, variable resolution unstructured mesh allows
a faithful representation of isolated local features as well as their relation to larger
scale processes. An objective of implementing an adaptive mesh approach is to reduce
the overall computational cost and increase accuracy of solutions; ensuring areas of
fine resolution are used only when and where they are required. Although these
techniques require additional computations, there is a point at which the additional
overhead incurred from the use of a uniform grid, composed of elements of the finest
resolution required, is greater than the overhead associated with the use of finite
elements coupled to a mesh adaptivity algorithm.

Any mesh adaptation algorithm requires the derivation of an appropriate error
measure. This error measure ‘guides’ the adaptivity algorithm, or in other words
decides how the mesh is to be modified. Numerous error measures to serve this
purpose have been presented in the literature. For example, interpolation based
methods (Peraire et al., 1987; Wu et al., 1990; Lohner et al., 1985; Piggott et al.,
2005) calculate an a priori measure of the error based on both the local mesh size and
some higher order derivative of the exact solution, which must typically be obtained
in practice using recovery from the numerical solution; there also exist various types
of explicit and implicit a posteriori error measures (Strouboulis and Oden, 1990;
Ainsworth and Oden, 1997). An error measure, for use in an oceanographic context,
should encompass criteria which are important to the problem in question. For
example, it should be able to identify sharp temperature gradients or regions of
high vorticity. Ocean flows also occur at a very wide variety of scales and a truly
rigorous error norm should reflect these issues. It should also be possible for the user
to have the freedom to build into the measure tailored information or criteria that
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The Imperial College Ocean Model (ICOM) (Ford et al., 2004; Pain et al.,
2005) utilizes dynamic adaptation of a fully unstructured tetrahedral mesh in three-
dimensions (3-D), as presented in Pain et al. (2001). This technique uses a form of
h-refinement (or mesh optimization) to adapt the mesh, changing the size, shape
and location of tetrahedral elements to optimize the mesh according to specific cri-
teria, as defined by an error measure. The algorithm is based on a series of mesh
connectivity and node position searches, defining the mesh quality. A Riemannian
metric tensor reflecting the error measure is used to calculate the desired element
size and, importantly, shape. A functional is used to gauge the mesh quality, this
functional embodies both element size and shape with respect to the metric tensor.
A local based search strategy is adopted to carry out the adaptation operations:
node smoothing; edge and face-edge swapping; and edge splitting and collapsing, to
minimize the functional. The algorithm is robust, produces high quality anisotropic
meshes, and has a time complexity which varies linearly with the number of ele-
ments, see Pain et al. (2001). The anisotropy of the method offers both substantial
computational improvements over fixed mesh methods and feature-following oppor-
tunities.

The error measure utilized in this work is one based upon both the curvature of
the solution (which provides directional information) and a required specification of
an appropriate interpolation error, derived from a goal-based method. The required
interpolation error varies in time and space through the simulation. Scaling of the
resulting metric tensor (Pain et al., 2001; Castro-Diaz et al., 1997) allows phenomena
acting at various scales to be resolved. The overall approach effectively uses the
current solution of the problem in hand to adapt the mesh to reflect future ‘activity’
in the flow.

The motivation for the incorporation of sensitivity analysis in error measure
design stems from the assumption that it is ineffective and undesirable (compu-
tationally speaking) to adapt the mesh every time step (or few time steps); so in
a dynamically evolving flow the mesh could be said to be ‘behind the flow’, and
therefore not in an optimal form to resolve features and provide the best solution.
The method presented here is a first step toward being able to ‘predict’ the flow’s
future movement (at least to highlight possibly important areas), and adapt the
mesh accordingly.

Sensitivity analysis deals with the calculation of the gradients of a model fore-
cast with respect to model parameters, where these parameters might be initial
conditions, boundary conditions or other physical inputs. Use of an adjoint model,
first introduced in Cacuci (1981), can identify regions where changes to variables
or parameters has the largest impact. Put simply, an area with high ‘sensitivity’ is
one within which small perturbations can strongly influence the growth of errors
in the overall solution. Sensitivity analysis has been applied in a variety of fields,
including the control of water through irrigation channels (Sanders and Katopodes,
1999) and contaminant releases in rivers (Piasecki and Katopodes, 1997), applica-
tions to the shallow water equations (Sanders and Katopodes, 2000), as well as
various meteorological applications (Zhang et al., 2000; Gunzburger, 1999; Lang-
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Navon, 2003; Cacuci, 1988), with later applications to optimal control, 3/4D-VAR
data assimilation and error estimation (Alekseev and Navon, 2005).

The aim of goal-based error measure design is to take a measure of what is
‘important’ in a problem and design an error measure, and consequently mesh adap-
tation scheme, to optimize the accuracy of this quantity. A bound on the required
accuracy for this quantity (goal) can be set, and the method presented in this paper
yields a mesh which achieves this level of accuracy with minimal computational re-
sources. A method of this type is particularly important for problems with a number
of solution variables where it is typically unclear what priority to put on resolving
each of the solution fields. The method developed here provides a systematic way
of doing this. The error contribution to each of the nodal solution variables can be
determined and used to substantially improve the accuracy of the goal functional,
see Pierce and Giles (2000); Miiller and Giles (2001). In addition, sensitivity infor-
mation may also be used to provide a bound for the error in this functional, which
can be invaluable to any model, see Paraschivoiu and Patera (1998). An example
of an application area of this type of technique is in the adaptation of a mesh to
optimize a quantity of interest in a fluid simulation such as the drag or lift past an
aerofoil (Pierce and Giles, 2000). The particular interest here is for an ocean model,
as described by Ford et al. (2004); Pain et al. (2005). The goal function in such a
model could be an observation or some measure of the dynamics of the system, for
example some integral of vorticity or the strength of the thermohaline circulation.

What distinguishes this work from previous work on goal-based error measures
and adaptivity, for example in (Oden and Prudhomme, 2001; Prudhomme and Oden,
1999; Cirak and Ramm, 1998; Venditti and Darmofal, 2000), is the use of readily
accessible (in simulation codes) discretized equations, the application to transient
problems and the use of a metric tensor obtained from sensitivity analysis to adapt
three-dimensional meshes of unstructured tetrahedral elements. The metric tensor is
used to gauge both shape and size quality of each tetrahedral element which forms
the basis of a mesh adaptivity /optimization procedure. Since the adjoint solution is
typically calculated in data assimilation, control, and optimization problems, then
the method presented in this paper provides an additional use for the adjoint infor-
mation. See Hide (1989, 2002) for a number of important diagnostics which may be
used to generate error measures.

The remainder of this paper is organised as follows. Section 2 gives a brief
overview of the anisotropic adaptivity method employed here. Section 3 outlines the
methodology for the goal-based method and the creation of a metric tensor. Section
4 outlines how the method is implemented for ocean modelling problems. Section 5
briefly outlines the model equations which are then utilized to solve a wind driven
rotating gyre problem, using the goal-based technology, in section 6. In section 7
some conclusions are drawn.
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For completeness a brief overview of the mesh optimization algorithm employed in
this work is given in this section. A more detailed description of the method is given
by Pain et al. (2001).

2.1 Metric tensor

The mesh optimization method presented requires as a precursor an error measure
in the form of a nodally defined metric tensor (George, 1998). This positive definite
matrix defines, anisotropically, the desired mesh edge lengths at each node. The
desired edge length, h;, in the direction of the i*" eigenvector, e;, of the metric
tensor M, is defined as h; = 1/4/A;, where ); is the eigenvalue associated with e;.
In general the metric tensor is used to calculate distances during mesh optimization
via ||v|| = v M,v where M, is the average metric tensor along vector v. This
approach may be viewed as a discretization of a Riemannian geometry constructed
from an error norm. As the directionality of the solution is encoded in the metric
tensor, anisotropic solutions will generally lead to anisotropic meshes that balance
accuracy with computational efficiency For example, the fact that the method seeks
a specific error means that the procedure will remove elements where there is a glut
in accuracy, thus improving computation efficiency.

When forming a suitable metric tensor a number of generic operations are reg-
ularly applied. These include: limiting the maximum and minimum desired edge
lengths so as not to specify unrealistic modelling goals; limiting the aspect ratio of
principal directions of an element; combining several metric tensors from different
solution fields; global scaling of the metric tensor in order to limit the computational
resources the model may request (i.e. limit the number of degrees of freedom in the
model); and metric tensor gradation control. Most of these operations are discussed
extensively in the literature (e.g. Pain et al. (2001); George (1998)) and so will not
be elaborated here.

2.2  Element functional

To define a mesh optimization problem an element functional is defined in terms of
the metric tensor and of the properties a good mesh should exhibit for modelling.
Trials are then performed on the local mesh connectivity and node position — in the
case of a minimization problem being defined the aim is to find a local configuration
that reduces the functional value. Defining the mesh functional as

F = ||F||s, (1)
where F' is the vector of element functionals for the whole mesh, the process termi-

nates when F falls below some tolerance. There are many possible choices for the
definition of the local functional F (see Knupp (2000) for a review). The element
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Here 7, is the length, with respect to the edge centred metric tensor, M,, of edge
l; L. is the set of edges of element e; p, is the radius, with respect to M, of the
inscribed sphere (insphere) of element e; and « is the radius of the inscribed sphere of
an ideal element. In 3-D the ideal element is defined in metric space as an equilateral
tetrahedron with sides of unit length.

The trade-off between size and shape is controlled by the parameter u, which has
been chosen to be unity for the work here. The first term in the functional becomes
zero as all of the edge lengths approach unity (measured with respect to the metric
tensor M), and the second term becomes zero as the in-sphere radius approaches «
(measured with respect to the metric tensor M ). In this way the functional gives a
measure of the quality of an element in terms of both its size and shape.

2.8 Mesh adaptations

For a given error metric and objective functional, the tetrahedral mesh is adapted
through a combination of:

e node insertion/deletion via edge splitting and collapsing,

e face-to-edge swapping and edge swapping (Joe, 1989),

e laplacian smoothing (in metric space),

e optimization-based smoothing.

It is worth noting that: edge collapsing reduces the number of elements and nodes
thereby coarsening the mesh; edge splitting increases the number of elements and
nodes, thereby refining the mesh; face and edge swapping, and mesh smoothing pri-
marily serve to modify the shape of elements. This multi-pronged approach is similar
to that of Freitag and Ollivier-Gooch (1997) except that the objective function de-
scribed above is used rather than purely Euclidean measures of element quality.

3 An Adjoint Based Sensitivity Measure

This section outlines the basis for calculation of an alternative metric tensor M,
based upon both forward and adjoint calculations.

3.1 A goal-based error measure

In this section two equivalent error measures are derived, based on the forward and
adjoint solutions. Suppose a differential equation to be solved is

zwewact — 5= Oa (3)

for source s, linear operator .Z (the extension to non-linear operators is relatively
straightforward although it can involve considerable algebra), and the exact solution
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N
=1 (x) =) N;(x) ¥y, (4)
j=1
with x being the spatial coordinates; discrete solution vector U = (Uy, Uy, ..., Uu)7;

basis function N; (x); and A the number of nodes in the finite element mesh. Then
the equation residual is

Z () = LY — s. (5)
The aim is to make this residual small in some sense. This is done by multiplying
equation 5 by a weighting function. In the Bubnov-Galerkin method this weighting
function is chosen to be the basis function N; (x). Whatever method is chosen to
discretize the equations a matrix equation and residual vector result:

r() = AT — S =0, 6)

for matrix A and discretized source S. In a practical implementation with inexact
arithmetic and possibly the use of iterative solution methods, r (¢)) may not be
identically zero. It is assumed insignificantly small in this work. This assumption
may be relaxed by retaining 7 (¢) in the following equations. In addition, note that
in the analysis it is assumed that 7 (1) is in some sense a discretized representation
of the residual Z () multiplied by a representative volume of each cell or node, as
achieved in typical finite element Petrov-Galerkin or control volume methods.

3.1.1 The functional or goal
Suppose that the functional whose accuracy is to be optimized is represented as
F=F(¢), and

F()= | f)adv, ()

where € is the solution domain. F (¢)) may be any derived quantity of the solution ).
Applying a first order Taylor series analysis, the gradient % near the exact solution
Yezact Can be obtained from

of
a7, (wezact - ¢) ~ f (wewact) - f (¢) ’ (8)
oY
or in discrete form,
oF\" -
(a—\y> (‘I’ewact - \I’) ~F (wewact) - F (TP) 9 (9)
in which Veroer = (Yeractsy Yezactys - - .,\IlemctN)T is a vector containing the exact

solution at the A finite element nodes (or control volume cells) and

_ N
1/Jezact = Z N] (X) \Ijezactj - (10)

=1
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3.1.2 Discrete error measure
Suppose a non-singular matrix A.,.. exists such that

Texact ({/;ewact) = Aewactwexact -S= 0, (11)
and 5
* nt * F
Tezact (wezact) = (AewaCt)T \I’emact - 8—\1’ =0. (12)
Define ¥} ., = ( svacty) Yegactyr -+ > Yegact N)T which is associated with the finite
element representation
N
w:zact = Z Nj (X) \Ij;mctj' (13)
j=1
Therefore,
a Texact 7L,e:vacz‘, ~
( 8\(11 )) (\I[e;cact - \I’) ~ Texact (wexact) — Tezact (1/1) (14)
=T (¢e$act) =T (d)) . (]‘5)
Then using the differential of equation 11,
(\I]ewact - \Il) ~ (-‘Aezca.ct)_1 (T ({Z;ewact) -r (d})) - (16)

This can then be combined with equations 9 and 12 to obtain

F (Jezact) - F (lp) ~ (g—f;) (Aemact)_l (T’ (,‘Zemact) - (d)))

” T -T oF
- (r (wemct) —r (w)) (Aczact) <8_\Il>
= (7‘ (djezact) -7 (1/1))T U et (17)

This expression can also be used to obtain an improved prediction of F', that is to
find F ¢’emct), once estimates of r (1/Jemct) and ¥* have been obtained.

exact

3.1.8 Discrete functional correction

Although the error estimates are obtained from equation 17, the product (r (@Eeuct) -7 (7,/)))

is not known and cannot be used directly to correct the functional F'. To do this the
following relation is employed

F (Sesact) = F (@) ~ (7 (esact) =7 (@) 0" % (7 () =7 ()7 9. (18)

T
P+

exact
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tion method outlined in section 3.3. Equation 18 can also be used to re-normalise
the error measures to correctly obtain the desired error in F'.

3.1.4 Dual discrete error measure
Another error measure, in a discrete sense can be defined from equation 17,

F (wezact) - F (’(/)) ~ (’f' (&emact) —-T (’l/)))T \Ij:zact
( A\pezact - S) - (A\I’ - S))T \I!::cact
= (A (Vepaer — 1)) T3 (U ppaee — )T ATT?

exact — exact

- (AT\I’:wact)T (‘I’ewact - \Ij) : (19)

This is used to form a directional error measure based on the forward solution.

3.1.5 Alternative error measures
The dual error measure measures derived in section 3.1.4 can be written, assuming

r () =0, as

Q

r (&emact)T qj:wact
r (@Zeamct)T U +r (lzexact)T ( :wact — \I’*)
" (&exaCt)T \Ifzwad +r (@E;uact)T (\Ile;vact - \I’) . (20)

F(wezact) - F(,(/))

From equation 20, a useful relationship which has an analagous continuous form is

oF

T
%) (‘Ilezact - \Ij) +r <Jemact)T ( :g;act - \II*) . (21)

F (Yegact) — F (Y) = <

Equation 21 is used to form a directional error measure based on the adjoint solu-
tion. Similar results to equation 20 have been used by Venditti and Darmofal (2000),

in which the latter part of equation 21, that is r (@emct)T (Vezaer — W) is used to
gauge mesh adaptivity isotropically (Venditti and Darmofal, 2002) and anisotropi-
cally (Venditti and Darmofal, 2003). In Pierce and Giles (2000) a defect correction
method, similar in form, is presented to increase the accuracy of the estimation.
Miiller and Giles (2001) use a similar approach to that described here, but using
an isotropic error measure. Note that equation 20 can also be written for linear
operators as



F (esact) = F (%)~ (AT ( T A—Tﬂ)) (Vezaer — 0)

T
= (AT ( :zact - \II*) + —> (\Ije:wct - \II)

oF

0
Estimates of the solution errors (¥* — W* ) and (¥ — Ueuee) can readily be ob-

tained using interpolation theory as outlined in section 3.2.

= (Ut = U)" A (Vepaer — ¥) + ( )T (Peaaet — ¥) - (22)

3.2 Deriwation of a Metric Tensor field to guide anisotropic mesh adaptivity

In section 3.1 the error measures (equations 19 and 21) were derived. In this section
these error measures are modified slightly by appro/xigating the unknown quantities
AT\P:mct and r (Jemct) with known quantities ATW?* . and 7 (&emct) respectively.
Full details of how this is implemented are outlined in section 3.3. The error measures
(equations 19 and 21) then become,

— T
F (wezact) - F (w) ~ (AT‘Ijzzact> (\Ileccact - \II) ) (23)
oF\" s~ T
F (wewact) - F (¢) ~ (%) (‘Ije:mct - KII) +7r (wezact) ( :mact - \II*) . (24)

These equations require a measure of the error in the forward solution (equation 23)
and both forward and adjoint solutions (equation 24).

3.2.1 Defining a Metric Tensor
A metric tensor (see section 2) can be defined:

M="H|.
el
Here H is the hessian matrix, € is the required level of error and y a scalar constant.
Ideal elements then have sides of length unity when measured with respect to this
metric tensor. The discrete (nodal) form of €, from equation 19 is

6F
&G =177 —— N
‘ (AT\IlZwact)

7

(25)

1

E?le Nj (x) €;. Suppose 6F is the acceptable error in F'; then assuming the error
contribution to F' is the same for each node, then we can define
— OF
oF = —. 26
- (26)

Here (AT\Ilzmct> is the ' entry of the vector ATU: .. and € = (Vegaer — 1) =

10
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For each solution variable [ and each node i one can define two Hessians: H i associ-
ated with the forward solution ¢! and H *i associated with the adjoint solution ¢*’.
The Hessian matrices are defined as

.0 .t
2 2

To calculate the Hessians, the method presented in Pain et al. (2001) is followed.
Galerkin methods are repeatedly applied to calculate the first derivatives. Let us just
consider the forward Hessian constructed from the forward solution 1!, consequently

at node 7: 0! 0!
; o0x

and in a similar way for ¢, and ¢} . Therefore,

o0x
ot N ON;
<%) == 2y v

=1

where N; are the finite element basis functions and M is the row summed lumped
mass matrix, see Zienkiewicz and Taylor (1991). The second order terms which form
the Hessian for an equation solution variable [ centred on node 7,

! /Y
qa:a:,- qmy,- qmz,-
L_ | 1 l l
H; = Yyw; Yyys Qyz |
! 1 !
qzwi qzyq; qzzq;

are calculated in a similar way, for example
dq aq
P MLgl/NiﬁdV, g, = MLgl/Niﬁdv.
3 8$ Yi 8y

If there are M solution variables per node then an averaged Hessian H; associated
with node 7 can be defined as

. 1 f: e
Yidy (M| i

, (27)

where l
/\i = (AT‘IIZzact) ot
(3
This technique uses equation 23 as the basis for this average. Using the error measure
defined by equation 23 the metric tensor field can be found. An interpolation error

€ at node 7 can be defined as -
oF
&= Tar (28)

2=t | A

11
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M; =

H;

(29)

|EZ‘

This is the metric tensor used in the applications (see section 6). Using the adjoint
error measure defined by equation 24 a second metric tensor can be obtained. To

this end suppose that
oF\'
A= [ 2 M= 7 ()
I3 (81[} )Z Y 2 r (w)z
then a combined averaged Hessian H associated with node i can be defined as
_— 1
i (A +

+ |\ |HS

j f (I ). (30)

l
*
A%

An adjoint based interpolation error € can be defined as

€ = oF
Lo (]

+ |24

;

So a new adjoint based metric tensor M at node 4 is obtained from

M =

(32)

3.2.8  Superimposition of Metric Tensors

In practise, one metric tensor M is required to guide mesh adaptivity. A s1ngle
metric tensor field can be obtained by either ignoring the metric tensor M~ and
using only M as the basis of mesh adaptivity, thus the overall Metric Tensor M;
at node 7 is obtained from

or alternatively by including both metric tensors M and M~ where

In this case the operator G (A, B) superimposes the two metric tensors A and B by
the method presented in Pain et al. (2001).

3.8 Determining equation residuals

In this section approximations ATlllzmct and 7 <1/Jemct) to ATU? . and r (ﬂemct)
respectively, are obtained for a particular node 7. This is achieved by finding a coarse
grid representation of the discrete matrix equations at each node 7; the residual is
obtained when an approximation to the adjoint solution ¥* is evaluated at the coarse
grid nodes and used in conjunction with the resulting coarse grid matrix. The coarse
grid residuals are obtained algebrically, so that no access to the governing equations

12
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an associated computer implementation) that is independent of the governing equa-
tions. With knowledge of how the residual varies with the grid resolution one can
determine an estimate of the residual. A fine grid stencil is constructed from the
nodes directly connected to the node i; these nodes form the set S; and are shown
as filled circles in figure 1. The fine grid stencil is indicated by solid bold lines in
figure 1. The fine grid stencil is extended by a factor of two in each direction to give
the location of coarse grid nodes. The coordinates of the coarse nodes x., related to
the nodes j € S; are defined as

X, =X; + 2 (Xj — Xz') . (35)

These points are shown with solid open circles in figure 1, the extension of the stencil
is shown with a bold dashed line. To apply quadratic interpolation a further point
must be defined, x; say. Similarly, the coordinates of the coarse nodes x4, related
to the nodes j € §; are defined as

Xa=X; — 2 (x5 — x;) . (36)

These points are shown with dashed open circles in figure 1, the extension of the
stencil shown with a standard weight dashed line. This process results in points x,
and x4, related to each node j € §;. These points generally lie inside elements of the
fine (original) mesh. The elements are identified by means of a local vicinity search,
initiated from one of the elements surrounding node 2. The values of a field, for the
purposes of this work the solution to the adjoint problem, U*! at points x, and x4
can then be found by interpolating from the known values of ¥*! at the nodes of
the element in which the point lies, thus yielding U*, and ¥*,. The objective is to
find an interpolated value of U*' at the fine grid node j. Computing this is now a
simple matter of applying a quadratic interpolation scheme, such that

g L ~Wa+ 6430

eractj — 8

(37)

This process is repeated for each of the nodes j surrounding node %, the interpolated
value at node 7, the centre of the descretization, is taken to be \I!*ﬁ Figure 1 shows
the stencil extensions required for a node ¢ with three surrounding nodes j.
Generally the points x. and x4 lie within elements of the fine (original) mesh;
there are however some special cases to consider when the nodes lie close to the
boundaries of the domain. As demonstrated in figure 2. It is likely that the stencil
will be extended beyond the boundaries of the domain. In the case that only x, lies
outside the domain or both x,. and x4 lie outside the domain then
\Ilzzact; = \Il*é (38)
Alternatively if x4 lies outside the domain then linear interpolation is applied such
that *l xl
o+ l _ v J + v c'

eractj — 9

(39)
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Fig. 1. Diagram showing how the coarse
grid is obtained for an unstructured mesh.
Filled circles represent fine grid nodes
(¥;); solid open circles indicate coarse grid
nodes (¥.) and dashed open circles repre-
sent the extra points required for interpo-
lation (¥g).

Fig. 2. Diagram showing how the coarse
grid is obtained for an unstructured grid
near to the domain boundary. Definitions
identical to those given by figure 1. Note
that it is possible to extend the stencil be-
yond the domain boundary, the method-
ology for deadling with this is detailed in

section 3.3.

The interpolated values of U* at the nodes surrounding node i are enough to com-

pute the i*® row of ATW? ... required by equation 25. It is sufficient to take the

interpolated values of ¥* in this case as the values of ¥?__ ..

3.3.1 Residual Smoothing

It should also be noted that the equation residual can be quite oscillatory, see (Pierce
and Giles, 2000) and has been smoothed in (Venditti and Darmofal, 2000) to obtain
residuals that can be used in the equations above. As indicated in the previous
section, smoothing is applied to the residuals calculated using the above method.
The smoothing method employed uses a weighted average of residual values at the
node in question as well as those nodes directly connected to it. For simplicity, let

7 be the approximation to the residual that has calculated; ATW?, .., or 7 (@Zemct).

This is defined at the nodes. Then a smoothed value of this, 73 say, at a node i, is
defined as,

1 1
~S ~ ~
=i — > 7y (40)
! 2 2Si jes;
where §; is the set of nodes directly connected to node 7, excluding node 7 itself and
s; is the number of nodes in set ;. Applying this proceedure to all the nodes in
turn creates a new smoothed field, the process is repeated a number of times (in the

e —
*

examples presented here 5 times where we amend ATV, .. in equation 23 using
this approach), producing increasingly smooth fields.
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Fig. 3. Pictorial representation of time domain.

4 Outline Implementation

At a point ¢ = 7 in the computation, when one wishes to adapt the mesh, _the
forward problem is solved from this time level (¢ = 7) using a time step of size AT
The solution of this problem provides the forward solution . The time step A7 is
the size of a multiple of time steps At (where At is the time step size for the overall
problem being solved) and is equal to the pre-set time between adaptations of the
mesh.

The adjoint problem is then initialized and solved backward from this point
t=1+ AT ), again using a time step of size AT , giving the adjoint solution W*.
The source term g—g for the adjoint problem is constructed from the solution to the
forward problem ¥ (at time ¢ = 7 + AT).

This procedure is best illustrated by figure 3 which shows the process for a
computation between two mesh adaptations. Once ¥ and ¥* have been found the
error measures and metric tensor M can be computed, and the mesh adapted. An
important point to note is that once the error measures and metric tensor have
been formed and the mesh adapted, the simulation continues, using time steps of
size At from the time level ¢ = 7, until the next scheduled adapt (at ¢ = 7 + AT),
at which point the process is repeated. The initial conditions, boundary conditions
and solution procedure for this forward problem (with a large time step A7) are
identical to those for the problem being solved. Once the end of the time step AT
has been reached the adjoint problem is initialized; the initial conditions are set to
the values produced by the forward problem at time ¢t = 7 + A7 . More details on
the construction of the adjoint and boundary conditions may be found in Fang et al.
(2005).

5 Numerical basis of model

The method outlined in this paper is used in conjunction with the Imperial College
Ocean Model, the numerical basis of which is briefly outlined in this section and
more fully considered in (Ford et al., 2004; Pain et al., 2005). In the model the
three-dimensional nonhydrostatic Boussinesq equations are discretized in the domain

15
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%—?—i—u-Vu—i—Qqu:—Vp—l—V-T—i—S, (41)

V-u=0. (42)

Where u = (u, v, w) represents the 3D velocity and p is the perturbation pressure.
Here u, v and w are the velocity components in the z-, y- and z-directions respec-

tively. The rotation vector is 2 and takes the form Q = (0, 0, %)T, where f is the
Coriolis parameter. The viscous terms are represented by the stress tensor 7. More
details of the numerical basis of the model can be found in Ford et al. (2004). A
functional can be defined in terms of the vorticity, as the problem is two dimensional
only one component of the vorticity,

ov Ou
(= (@ - 6_y> ; (43)

is non-zero. The rationale for basing functionals around vorticity stems from the
ability to represent the vorticity numerically. Thus an appropriate functional can be
defined as,
1
f (u,0) = ¢ (44)

To initialize the adjoint problem (see section 4) the source terms g—f; must be calcu-
lated. When time stepping is used the functional from section 3 can be defined as

total enstrophy at time level n + L:

2
_ L w1 AN AN
F_Q/(C+ )dv_2/ - 5 dv, (45)

in which L is the number of time steps used to form the error measure. The aim
of using the functional defined by equation 45 is to optimize the accuracy of the
functional at the end of time step AT (time interval between two consecutive mesh
adaptations), or taking into account all time levels by using

1 L 2
_ - (k)
f—Qk_Z (¢®)". (46)
=n+1
Thus
OF ON; , OF [ ON; , OF
— _— = —_— ::0.
Oul dy v, vk ox v, Opk

Then applying the procedure previously described the solution at each time level
between two mesh adaptations from n to n + L is calculated. Then the multi-field
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ACHD 0 ... $+D) Flo1) _ B(n+D) g(n)
B2 AH2) ... o | Flo+2) n
0 ... BtD) AGtL) | | gntl) flntr)
u™

in which ¢(™ = | ¢ | with ¢ = (ugn), ugn), e uj\?)), o™ = (va), vén), e, vj((;))

and p™ = (pg”),pg”), o (Nn)) contain the nodal velocities and pressures at time

level n. ¢*™ can be defined in a similar way for the adjoint problem where ¢*™ =
U

v*(™ |. Now assuming the problem is linear, the adjoint equation becomes

B*(")
T T
(A(n—l—l)) (B("+2)) 0 HHn+D) aﬁrﬁw
e
: : : : _ | 2¢nF2 48
0 (A(n+L—1))T (B(n+L))T G tL=1) : ;48
T
0 0 (A(n+L)) $*(n+1T) 6¢?n11m
where
p)
a(p(rﬁl) 0
oF
dp(n+2) —
: 0
_OF _ _OF
B tD) ¢TI

In equation 48 it has effectively been assumed that ¢*"+2+D = 0. There are a
number of issues arising from the formulation of these matrices, for example the
use of the same projection method to approximately solve the adjoint equations
(48) as that used to solve the forward equations (47). This modifies the equations
above slightly, but is an approximation to them. This has been the motivation for not
necessarily assuming that r (¢/) = 0 in the derivation of equation 19. If the time steps
for the forward and adjoint calculations used here are large (bearing in mind that the
time step will typically be larger than that used to solve the equations once an error
measure has been found and the mesh adapted) then a single Picard iteration in time
is used for non-linear stability. The equations themselves can become very poorly
conditioned for these large time steps if the same discretization method were used
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Crank-Nicholson time stepping, thus the SUPG method for spatial discretization
with backward Euler time-stepping is employed to evaluate equations 47 and 48.
For L = 1 equations 47 and 48 become (assuming ¢" is known from before model is
adapted):

A(n+L)¢(n—|—L) — _B(n+L) + f(n—i—L)’ (49)
(n+L) T *(n+L) _ oF
(D) gt = met (50)

and are evaluated in this order. To recover some of the accuracy lost by using only
one time step to calculate the error measure the trapezoidal rule is used to calculate
¢ via ¢ = (qzﬁ(") + ¢("+L)), and similarly evaluate ¢* between mesh adaptations.
Our aim is to obtain a mesh which can define the fields at each time step between
adapts and thus optimizing the mesh at the mid time level. Thus the equations
become,

A(n-f—L)d)(n—l—L) — _B(n+L)¢n + f(n-i—L)’ (51)
mr N\ T a(ngl oF
(A( +2)) 10) ( +2) = 8¢(n+L)’ (52)
with i
=3 (6" 49" Y) and AT = (ACH)) g,

These values are used to evaluate the metric tensor, given by equation 29 and the
process is shown diagramatically in figure 3.

6 Non-linear ‘Munk’ problem

Wind driven barotropic circulation provides a good test of this technology. Extend-
ing the considerations from the linear problem considered in Munk (1950) to the
non-linear version of the problem examined by Ierley (1987) gives a test not only
applicable in an ‘oceanographic’ context, but one where the flow structure is less
predictable and exists at a variety of scales. The domain is taken to be a square box
of size 1000 km which is 500m deep. A maximum zonal wind stress of 7 = 0.1 Nm 2
is applied in a cosine of latitude profile, as described in Marshall et al. (2003). The
Coriolis terms are taken into account by 8 = 1.8 x 107''m~!s~! and the reference
density is py = 1000 kgm=3.

The problem is non-dimensionalized, so that the domain is a box with sides 1,
and depth 0.0005. The domain is maintained at 1 element in the vertical. Incor-
porating the beta-plane approximation gives a non-dimensional rotation vector of
Q* = (0,257.143,0) and non-dimensional wind stress of 77 = 163.2653 The wind
stress is applied in a cosine of latitude profile (see Marshall et al. (2003)) and is
averaged over the depth of the domain. The non-dimensional time step is taken to
be 3.78 x 1072, equivalent of 3 hours. No-slip conditions are applied to the lateral
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Fig. 4. Initial flow vectors, at day 100. Fig. 5. Initial mesh, at day 100.

boundaries. Two sets of results are presented with Reynolds numbers of 20, ensur-
ing a reasonably non-chaotic regime (section 6.1) and 1000, providing a reasonably
chaotic regime (section 6.3).

The functional and source terms are calculated using the solution to the forward
problem U, (see section 4 for details), at time level t = 7+ AT, where AT is taken to
be 1.51 x 1072 or 5 days, which is the time between adapts of the mesh, as discussed
in section 4. §F is taken to be 5.0 x 107!, with the minimum and maximum edge
lengths being 0.001 (1km) and 0.1 (100km) respectively. The number of nodes is
capped at 10, 000.

6.1 Results - Re = 20

The adaptive method is employed on this problem from 100 days into the simulation,
after most spin-up effects have taken place. The simulation is conducted up to this
point on a set mesh of 50 X 50 elements; the initial velocity vectors, mesh and
velocity components are shown in figures 4 to 7 respectively. The forward and
adjoint time steps are preformed as detailed in section 4, the adjoint problem being
initialized from source terms derived from the differential of the functional F'. The u
and v components of the forward solution ¥ are shown in figures 8 and 9; with the
components v* and v* of the adjoint solution ¥* shown in figures 10 and 11. The
residuals are estimated from U* by the method described in section 3, resulting in
two residual fields relating to u* and v*. These are shown in figures 12 and 13. The
Hessians of the forward solution fields are calculated and averaged and used to form
a metric tensor M with which to adapt the mesh. The results shown in figures 8
to 13 relate to the first adaption of the mesh, i.e. the initial large forward time step
is between day 100 and day 105 of the simulation, the aim being to optimize the
accuracy of the functional at half way through day 102. The adapted mesh, used to
compute the actual solution, using time steps of 3 hours between days 100 and 105
is shown in figure 14. The process is repeated when the simulation reaches day 105,
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Veilocity (X-Component)
-1.29 00714 114 236 3.57 4.79 6.00

Fig. 6. Initial z-component of velocity.

Forward Velocity (X Component)
1.14 4.79 6.00

!
=

Fig. 8. z-component of forward velocity at
end of large timestep AT .

Velocity (Y-Component)
-5.00 -286 -0.714 143 3.57 5.71 7.86 10.0

Fig. 7. Initial y-component of velocity.

Forward Velocity (Y- Componenf)
-5.00 -286 -0.714 143 3.57 71 7.86 10.0

Fig. 9. y-component of forward velocity at
end of large timestep AT .

Adjoint Velocity (X-Component)
-5.00 -286 -0.714 143 3.57 5.71 7.86 10.0

Fig. 10. z-component of adjoint velocity,
after adjoint timestep of A7

Adjoint Velocity (Y-Component)
-10.0 -500 000 500 100 150 200 250

Fig. 11. y-component of adjoint velocity,
after adjoint timestep of A7



Residual: x-velocity component Residual: y-velocity component
0.09 0.000357 0.000714 0.00107 0.00143 0.00179 G.00214 0.00280 0.09 0.000214 0.000429 0.000843 0.050857 o0.00107 G.0012¢ 0.00180

Fig. 12. z-velocity component of residual. Fig. 13. y-velocity component of residual.
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Fig. 14. Mesh adapted to optimize accu- Fig. 15. Mesh adapted to optimize accu-
racy of functional F' at day 102.5. 5023 racy of functional F' at day 107.5. 4701
nodes. nodes.

taking a large time step to day 110 and finding a mesh to optimize the accuracy of
the functional at half way through day 107. Subsequent adapted meshes are shown
in figures 15 to 19.

6.2 Results - Re = 20, Old Method

The results in section 6.1 are compared to results obtained by the method
described in Pain et al. (2001), where the metric tensor M is defined as:

m="\H|. (53)
€
Here € is a globally defined value of the interpolation error. Metric tensors based

on the z- and y-components of velocity are constructed and then superimpossed
as previously discussed to create one metric tensor M. In the cases presented here
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€ = 0.1 is used when constructing metric tensors based on u or v; all other parameters
are identical to those used in section 6.1.

Figures 20 to 25 show the meshes used for computations at similar times to those
in figures 14 to 19, the difference being in the construction of the metric tensors used
to adapt the mesh. In this section the metric tensors are based solely on v and v at a
single point in time. For example, figure 20 shows the mesh used for computing the
solution between days 100 and 105 and is constructed from the values of u and v at
day 100; in contrast the mesh shown in 14 (used for computing the solution between
the same points in time) is adpated to optimize the accuracy of the functional F
half way between the two adapts of the mesh - in this case half way through day
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Fig. 20. Mesh used for computing solution
between days 100 and 105, with metric
tensor as defined by equation 53. 77 nodes.

Fig. 22. Mesh used for computing solution
between days 110 and 115, with metric
tensor as defined by equation 53. 7?7 nodes.

Fig. 24. Mesh used for computing solution
between days 120 and 125, with metric
tensor as defined by equation 53. 7?7 nodes.

Fig. 26. Mesh adapted to optimize ac-
curacy of functional F' at day 102.5. 77
nodes.

Fig. 28. Mesh adapted to optimize ac-
curacy of functional F' at day 112.5. 77
nodes.

102.

6.3 Results - Re = 1000

Fig. 21. Mesh used for computing solution
between days 105 and 110, with metric
tensor as defined by equation 53. 77 nodes.

Fig. 23. Mesh used for computing solution
between days 115 and 120, with metric
tensor as defined by equation 53. 77 nodes.

Fig. 25. Mesh used for computing solution
between days 145 and 150, with metric
tensor as defined by equation 53. 77 nodes.

Fig. 27. Mesh adapted to optimize ac-
curacy of functional F' at day 107.5. 77
nodes.

Fig. 29. Mesh adapted to optimize ac-
curacy of functional F' at day 117.5. 77
nodes.

In this section the method is applied to a case with a Reynolds number of 1000,
to explore a more chaotic regime. Identical conditions are used as to those in section
6.1. Meshes at equivalent times to those in the two previous sections are shown in
figures 26 to 31.

7 Conclusions

A novel method of defining a metric tensor field for giving the size and shape of ele-
ments in adaptive mesh modelling of oceanographic phenomena has been presented.
A goal-based technique has been used to highlight areas of the domain where in-
creased (or decreased) mesh resolution is desirable. The goal and measure of the
dynamics of the two-dimensional gyre problem presented here is to optimize the ac-
curacy of the total enstrophy (integral over the solution domain of vorticity squared).
The method employs both forward and adjoint computations to calculate a sensitiv-
ity, thereby highlighting locations of the domain that warrant increased resolution.
The specified level of acceptable error for each variable is set by the method, rather
than a constant global value being defined by the user. This allows the specified
level of acceptable error to be varied automatically in time and space, according to
the requirements of the problem.

Fig. 30. Mesh adapted to optimize ac-
curacy of functional F' at day 122.5. 77
nodes.

Fig. 31. Mesh adapted to optimize ac-
curacy of functional F' at day 147.5. 77
nodes.
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considering turbulent flows, where very fine resolution may be desired in a majority
of the domain, but where a restriction in computational overheads exists. In cases
such as these, a method which highlights more important areas to be considered will
be an important tool in resolving the problem accurately with the given resources.
Future work will involve the testing of the method on an extended set of benchmarks;
the application of a variety of functionals or goals.
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