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Abstract 

Four dimensional variational data assimilation (4DVAR) is a powerful tool for data 

assimilation in meteorology and oceanography. However, a major hurdle in use of 

4DVAR for realistic general circulation models is the dimension of the control space 

(generally equal to the size of the model state variable and typically of order 107 − 108) 

and the high computational cost in computing the cost function and its gradient that 

require integration model and its adjoint model). Current ways to obtain feasible 

implementations of 4D-Var consist mainly of the incremental method that consists in 

generating a succession of quadratic problems which can be solved in inner loop 

using a coarse resolution corrected by full model runs in few outer loops. However 

the method is characterized by the fact that the dimension of the control space remains 

very large in realistic applications.  

 

In this paper, we propose a 4DVAR approach based on proper orthogonal 

decomposition (POD). POD is an efficient way to carry out reduced order modeling 

by identifying the few most energetic modes in a sequence of snapshots from a 

time-dependent system, and providing a means of obtaining a low-dimensional 

description of the system's dynamics. The POD based 4DVAR not only reduces the 

dimension of control space, but also reduces the size of dynamical model, both in 

dramatic ways. The novelty of our approach also consists in the inclusion of 

adaptability, applied when in the process of iterative control the new control variables 

depart significantly from the ones on which the POD model was based upon. In 

addition, these approaches also allow to conveniently constructing the adjoint model.  

 

The proposed POD based 4DVAR methods are tested and demonstrated using a 

reduced gravity wave ocean model in Pacific domain in the context of identical twin 

data assimilation experiments. The results show that POD 4DVAR methods converge 

faster with a much smaller computational cost (less than 1/100 computer time of the 

full order 4DVAR). This study also shows that further research efforts in this direction 



are worth pursuing and may lead ultimately to a practical implementation in both 

operational NWP and ocean forecasts. 
 
Key words: proper orthogonal decomposition, variational data assimilation, reduced 

order, ocean-modeling.



1. Introduction 

Four dimensional variational data assimilation (4DVAR) is a powerful tool to obtain 

dynamically consistent atmospheric and oceanic flows that optimally fit observations. 

Since its introduction (see LeDimet and Talagrand, 1986), 4DVAR has been applied to 

numerical weather prediction (NWP) (e.g., Courtier et al. 1994), ocean general 

circulation estimation (e.g., Stammer; Awaji et al. 2003) and atmosphere-ocean-land 

coupled modeling (Awaji et al. 2003). However, a major hurdle in use of 4D-Var for 

realistic general circulation models is the dimension of the control space, generally 

equal to the size of the model state variable and typically of order 107 − 108. Current 

ways to obtain feasible implementations of 4D-Var consist mainly of the incremental 

method (Courtier et al. 1994) which is the method adopted at all operational centers 

implementing 4D-Var. Additionally check-pointing (Griewank 2000, Griewank and 

Walter, 2000) and parallelization are also used. The incremental method proposed by 

Courtier et al. (1994) consists in generating a succession of quadratic problems which 

can be solved in inner loop using a coarse resolution corrected by full model runs in 

few outer loops –however the method is characterized by the fact that the dimension 

of the control space remains very large in realistic applications (see Li et al. (2000), 

Gauthier (2003), Tremolet (2004)). Memory storage requirements impose a severe 

limitation on the size of assimilation studies, even on the largest computers. 

Checkpointing strategies (Restrepo et al. 1998, Griewank and Walter, 2000) have been 

developed to address the explosive growth in both on-line computer memory and 

remote storage requirements for computing the gradient by the forward/adjoint 

technique that characterizes large-scale assimilation studies. It was shown that the 

tradeoff between the storage requirements and the computational time might be 

optimized such that the storage and computational time grow only logarithmically 

(Griewank 1992). 

 

Parallelization using message-passing interface (MPI) is currently used to implement 

4D-Var (ECMWF, NCEP, and WRF). In order to reduce the computational cost of 



4D-Var data assimilation we can consider carrying out the minimization of the cost 

functional in a space whose dimension is much smaller than that of the original one. A 

way to drastically decrease the dimension of the control space without significantly 

compromising the quality of the final solution but sizably decreasing the cost in 

memory and CPU time of 4D-Var motivates us to choose to project the control 

variable on a basis of characteristic vectors capturing most of the energy and the main 

directions of variability of the of the model, i.e. SVD, EOF, Lyapunov or bred vectors. 

One would then attempt to control the vector of initial conditions in the reduced space 

model. 

 

Up to now, most efforts of model reduction have centered on Kalman and extended 

Kalman filter data assimilation techniques (Todling et al. 1994, 1998; Pham et al. 

1998; Cane et al. 1996; Dee 1990; Evensen 1992; Fukumori 1995; Fukumori and 

Malanotte-Rizzoli 1995; Hoang et al. 1997; Verlaan and Heemink 1997; Hoteit and 

Pham 2003). In particular, Cane et al. (1996) employed a reduced order method in 

which the state space is reduced through the projection onto a linear subspace spanned 

by a small set of basis functions, using an empirical orthogonal function (EOF) 

analysis. This filter is referred to as the reduced order extended Kalman (ROEK) 

filter. 

 

Some initial efforts aiming at the reduction of the dimension of the control variable - 

referred to as reduced order strategy for 4D-Var ocean data assimilation were put 

forward initially by Blayo et al. (1998), Durbiano (2001) and Durbiano et al. (2002) 

and more recently by Hoteit et al. (2004) and Robert et al. (2005). They used a low 

dimension space based on the first few EOF’s or empirical orthogonal functions, 

which can be computed from a sampling of the model trajectory. Hoteit et al. (2004) 

used the reduced order model for part of the 4-D VAR assimilation then switched to 

the full model in a manner done earlier by Peterson (1989).  

 

The proper orthogonal decomposition (POD) is an efficient way to reduced order 



modeling by identifying the few most energetic modes in a time-dependent system, 

thus providing a means of obtaining a low-dimensional description of the system’s 

dynamics. It was successfully used in a variety of fields including signal analysis and 

pattern recognition (see Fukunaga 1990), fluid dynamics and coherent structures (see 

Aubry et al. 1988; Holmes et al. 1996; Ma and Karniadakis 2002; Bansch 1991) and 

more recently in control theory (see Afanasiev, et al. 2001; Arian, et al. 2000;. Kepler 

et al. 2000; Ly and Tran 2002; Ly  and  Tran 2002) and inverse problems (see 

Banks et al. 2000). Moreover, Atwell et al. (2000) had successfully utilized POD to 

compute reduced-order controllers. For a comprehensive description of POD theory 

and state of the art research, see Gunzburger (2003) and Gunzburger et al. (2004).  

 

In this paper we apply POD to 4DVAR our first aim being to explore the feasibility of 

significant reduction in the computational cost of 4DVAR. Our basic approach will 

build on the POD-based adaptive control of Hinze and Kunisch (2000) and Arian, 

Fahl and Sachs (2002). The novelty of our approach resides also in the inclusion of 

adaptivity, applied when in the process of iterative control the new initial condition 

departs significantly from the one on which the POD model was based upon. The 

paper is arranged as follows. A brief review of POD is given in section 2. A 4DVAR 

formulation based on POD and an adaptive POD 4DVAR are proposed in section3. 

The numerical model used in this study is a reduced gravity ocean model and its POD 

model is described in section 4. The accuracy of the POD model is also examined in 

section 4. Section 5 contains results from identical twin data assimilation experiments 

using 4DVAR, POD 4DVAR and adaptive POD 4DVAR , respectively. Discussions of 

some related issues are presented in section 6. Finally, Section 7 provides main 

conclusions of this study. 
 

2. POD 

For a complex temporal-spatial flow , we denoted by an 

ensemble adequately chosen in a time interval , that is 。Define the 

),( xtU nUU ,...,1

],0[ NT ),( xtUU i
i =



mean： 

 ∑
=

=
n

i

iU
n

U
1

1                                       （2.1） 

 We expand as ),( xtU

)()()(),(
1

xtcxUtxU i

M

i
i

POD Φ+= ∑
=

                       （2.2） 

where the POD basis vector and M are judiciously chosen to capture the 

dynamics of the flow as follows. First, define the spatial correlation matrix K（nxn）

with entries 
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Next the eigenvalue 
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is solved to obtain the eigenvalues nλλ ,...,1 and the orthonormal eigenvectors 

(if rank (K) < n only the eigenvectors associated to the nonzero eigenvalues 

are computed). The POD basis vectors are obtained by defining 

nvv ,...,1

MiUUv
n

k

k
kii ,...,1,)()(

1

=−=Φ ∑
=

                 （2.5） 

which are then normalized iii ΦΦ=Φ to obtain an orthonormal basis. 

One can define a relative information content to choose a low-dimensional basis of 

size M (<<n) by neglecting modes corresponding to the small eigenvalues. We define 
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and choose M such that 

})(:)(min{arg γ≥= mImIM  

where 10 ≤≤ γ  is the percentage of total information captured by the reduced space 

.The tolerance },...,{ 1 M
M spanD ΦΦ= γ  must be chosen to be near the unity in 



order to capture most of the energy of the snapshot basis. The reduced order model is 

then obtained by expanding the solution as in (2.2).  

For an atmospheric or oceanic flow , it is usually governed by a dynamic 

model 
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To obtain a reduced model of (2.7), we can first solve (2.7) for an ensemble of 

snapshots and follow above procedures, then use a Galerkin projection of the model 

equations onto the space spanned by the POD basis elements (replacing U in (2.7) by 

(2.2), then multiplying  and integrating over spatial domain) :  iΦ
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Equation (2.8) defines a reduced model of (2.7). In the following sections we will 

discuss applying this model reduction to 4DVAR in which the forward model and the 

adjoint model for computing the cost function and its gradient is the reduced model 

and its corresponding adjoint. 
 

3. POD-4DVAR 

3.1 POD-4DVAR 

At the analysis time , strong constraint 4DVAR looks for an optimal solution of 

(2.7) to minimize a cost function 
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In POD 4DVAR, we look for an optimal solution of (2.7) to minimize the cost 

function 

)()()()())0(,),0(( 1
0

1
01

oPODToPOD
b

PODT
b

POD
M yHUOyHUUUBUUccJ −−+−−= −−

(3.2) 



where  is the control vector, PODU0 H  is an observation operator, B  is the 

background error covariance matrix and O  is the observation error covariance 

matrix. 

In (3.2),  
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In POD 4DVAR, the control variables are . As shown later, the 

dimension of the POD reduced space could be much smaller than that the original 

space. In addition, the forward model is the reduced model (2.8) which can be very 

efficiently solved. The adjoint model of (2.8) is used to calculate the gradient of the 

cost function (3.2) and that will greatly reduce both  the computation cost and coding 

effort. 

)0(,),0(1 Mcc

To establish POD model in POD 4DVAR, we need first to obtain an ensemble of 

snapshots, which is taken from the background trajectory, or integrate original model 

(2.7) with background initial conditions. 

 

3.3 Adaptive POD-4DVAR 

Since the POD model is based on the solution of the original model for a specified 

initial condition, it might be a poor model when the new initial condition is 

significantly different from the one on which the POD model is based upon. Therefore, 

we propose an adaptive POD 4DVAR procedure as follows: 

(i) Establish POD model using background initial conditions and then perform 

optimization iterations to approximate the optimal solution of the cost function 

(3.2); 

(ii) If after a number of iterations, the cost function cannot be reduced 

significantly, we generate a new set of snapshots by integrating the original 

model using the newest initial conditions; 



(iii) Establish a new POD model using the new set of snapshots and continue 

optimization iteration; 

(iv) Check if the optimality conditions are reached, if yes, stop; otherwise, go to 

step (ii). 
 

4. Model and POD reduced model 

4.1 Model 

The numerical model used here is a reduced-gravity model. The equations (Seager et 

al. 1988) for the depth-averaged currents are 
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where (u,v) are the horizontal velocity components of the depth-averaged currents; h 

the total layer thickness; f the Coriolis force; H the mean depth of the layer; oρ  the 

density of water; and A the horizontal eddy viscosity coefficient and α  is the friction 

coefficient. The wind stress is calculated by the aerodynamic bulk formula 

),(),( windwind
2

wind
2

wind vuvucDa
yx += ρττ , 

where aρ  is the density of the air;  the wind stress drag coefficient; U the wind 

speed vector; and (uwind,vwind) the components of the wind velocity. 

Dc

 

In this study, we applied the model to the tropic Pacific Ocean domain (29oS-29oN, 

120oE-70oW). This chosen model domain allows all possible equatorially trapped 

waves, which  can be excited for example by the applied wind forcing (Moore and 

Philander 1978). The model is discretized on the Arakawa C-grid, and all the model 

boundaries are closed. The no-normal flow and no-slip conditions are applied at these 



solid boundaries. The time integration uses a leapfrog scheme, with a forward scheme 

applied every 10th time step to eliminate the computational mode. We choose the 

spatial interval for the dynamical model to be and the time step to be 

s. This temporal-spatial resolution will allow to resolve all possible waves 

and to make the model integration numerically stable. The model is driven by the 

Florida State University (FSU) climatology monthly mean winds (Stricherz et al. 

1992). The data are projected into each time step by a linear interpolation and into 

each grid point by a bilinear interpolation. The values of numerical parameters used in 

the model integration are listed in Table 1. It takes about 20 years for the model to 

reach a periodic constant seasonal cycle; at that time, the main seasonal variability of 

dynamical fields has been successfully captured. The currents and the upper layer 

thickness of the 21st year are saved for POD reduced model and data assimilation 

experiments as described below.  

05.0=Δ=Δ yx

100=Δt

 

4.2 Construction of POD reduced model 

For successful POD 4DVAR, it is crucial to construct an accurate POD reduced model. 

In this section, we demonstrate in detail the construction of the above reduced gravity 

model (referred as full model thereafter) and check its accuracy of approximation to 

the full model. 

The procedure for computing the POD reduced order spaces  

consists of the following steps. 
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(i) Obtain the snapshots. At first, full model was integrated for 20 years. During the 

21st year these equations are solved at  time steps (then snapshots) n

)}(,),(),();(,),(),();(,),(),({ 212121 xvxvxvxuxuxuxhxhxh nnn   

at an increment of  day for n/360 Ω∈x  (here Ω  denotes the-two dimensional 

rectangular domain). These snapshots are discrete data overΩ . 

(ii) Compute the covariant matrix . The matrix elements of  are 

given as . Here the space-time transposed 

vuh DDD ,, vuh DDD ,,

v
T
vvu

T
uuh

T
hh AADAADAAD === ,,



technique is used. 

(iii) Solve the eigenvalue problem vvvvuuuuhhhh VVDVVDVVD λλλ === ;; . Since 

are all nonnegative  Hermitian matrices, they all have a complete set of 

orthogonal eigenvectors with the corresponding eigenvalues arranged in ascending 

order as 

vuh DDD ,,
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respectively. 

(iv) Compute the POD basis vector. The POD basis elements )();();( xxx viuihi ΦΦΦ  
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(v) Construct the POD reduced model. Using above basis functions, we can 

approximate the full model solution using the form: 
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with coefficients  to be determined. 

Substituting (4.2) into (4.1) and multiplying 
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on both sides, then integrating over whole model domain respectively. Since the basis 

functions are orthonormal, the reduced system of ODEs is as follows 
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The initial conditions of (4.3) are 
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Using the Euler-backwards differencing scheme to solve the above ODE (4.3) 

problems, the approximated solutions can be obtained. 

 

4.3 Accuracy of POD reduced model 

The accuracy of  POD  reduced model had been discussed in detail (see Cao et al. 

2005). Here we only display the results in a succinct manner. We consider 

approximate one-year results of the full model by the POD reduced model. First, we 

found that no more than 30 snapshots are required to obtain good approximation from 

POD reduced model. The approximation is very accurate both in terms of root mean 

square error (RMSE) and in terms of correlations. The overall RMSE is about 1m and 

correlations are about 0.99 (see Table 2 and Table 3 more details). 

 

The dimension of the POD reduced model depends on the number of basis functions. 

We found that only few basis functions (POD modes) are required to capture a high 

percentage of variability. Figure 1 shows the captured energy by different numbers of 

POD modes. 99% of variability can be captured by 11 POD modes. The dimension of 



the POD reduced model is 33 if 11 modes are used. That is significant considering 

that the dimension of the full model is 104.  
 

5. POD 4DVAR experiments 

5.1 Assimilation experiments 

In this section, we present identical twin data assimilation experiments to examine the 

performances of POD 4DVAR and adaptive POD 4DVAR by comparing them with 

4DVAR. The “true” seasonal cycle of tropic Pacific is generated by forcing the model 

using FSU climatology monthly wind fields as described in the previous section. 

From the twelve-month’s truth, we generate a set of observations of h that have 

uncorrelated Gaussian observational errors of zero mean and 0.06 m of variances. 

Observations are sampled at the one by one degree resolution and a 10-day temporal 

resolution. This observation network and error characteristics imitate the 

Topex/POSEIDON/JASON-1 satellite sea surface height observations. 

 

The control variables in these experiments are initial conditions only. The cost 

function consists of observation terms and the background terms. The observation 

error covariance matrix is a diagonal one with 0.062 as diagonal elements. The 

background field is taken from the true state, but different background fields are 

chosen for different assimilation window in the following sections. The background 

covariance matrix is assumed diagonal and the variances are determined, based on 

truth-minus-background. 

 

We divide these experiments into two groups. In the first group, the length of 

assimilation window is one month, that is, the observations of the first month are 

assimilated. In the second group experiments assimilation window is one year, the 

corresponding observations of the twelve months are assimilated.    

 

In 4DVAR experiments, we carry out  a preconditioning by inverse of square root of 

the background error covariance matrix. In POD 4DVAR experiments, the POD 



model is constructed in the way described in section 4, but the snapshots are taken 

from the background model results within the assimilation window. The number of 

the snapshots is 30 for one month and 60 for one year, respectively. The POD basis 

functions are used to capture at least 99% of variability of the snapshots. In the 

adaptive POD 4DVAR experiments, the optimization comprises several outer 

iterations. In each outer iteration, the POD model is updated from a new set of 

snapshots that are taken from the full model results based on the  result of the 

previous outer iteration. We stop the present outer iteration and switch to a new outer 

iteration following the criterion that the gradient should  decrease by at least three 

orders of magnitude from  the initial gradient value in the outer iteration 

minimization.  

 

The numerical solution of the optimal control problem is obtained using the M1QN3 

large-scale unconstrained minimization routine, which is based on a limited memory 

quasi-Newton method. 

 

5.2 Results from one-month experiments 

In this section we present the numerical results for the first group. The assimilation 

window is one month. The background field is taken from the true state on the 10th 

day. The number of snapshots used in POD-4DVAR and adaptive POD-4DVAR is 30 

and the energy captured is at least 99.99%. 

 

Figure 2 shows the history of the cost function and its gradient during the standard 

4DVAR experiment. The reduction of the cost function is more than 2 orders in 

magnitude. The gradient is reduced by more than 3 orders in magnitude. 

 

Figure 3 shows the history of the minimization of  the cost function and its gradient 

during the POD 4DVAR experiment. The reduction of the cost function is more than 

that obtained from standard 4DVAR experiment. The gradient is reduced by more 

than 4 orders in magnitude.  



 

Figure 4a shows the error between the true state and the background state, Figure 4b 

presents the error between the true state and 4DVAR and Figure 4c displays the error 

between the true state and POD-4DVAR at the initial time for the  upper layer 

thickness. From these figures, one can see clearly that the results from 4DVAR 

improve on background and the figure shows that the results from POD-4DVAR are 

better compared to those obtained in 4DVAR, which has the smallest error. 

 

5.3 Results from one-year experiments 

Here we present the numerical results for the second group. The assimilation window 

is one year. As discussed in previous section, the background field is taken from the 

true state on the 100th day. The number of snapshots used in POD-4DVAR and 

adaptive POD-4DVAR is 60 and the energy captured is more than 99%. 

 

Figure 5 shows the history of the cost function and its gradient during the 4DVAR 

experiment. The cost function is reduced during the first several iterations, but then 

cannot be decreased any more. The gradient of the cost function is also not 

sufficiently reduced. There are several possible reasons responsible for the failure of 

4DVAR experiment. First one may suspect inaccurate coding of the adjoint model. 

However we performed strict gradient check and found the adjoint model is accurate 

up to round-off errors. The second reason may be due to bad conditioning of the 

problem since the assimilation window is too long. We did some other 4DVAR 

experiments with different assimilation windows and found that when the length of 

the window is less than 3 months, 4DVAR can successfully reach the minimum as 

displayed in section 5.2 for one month. Therefore we conclude that the failure of 

4DVAR experiment is due to bad conditioning caused by too long assimilation 

window. It has been known in NWP that an assimilation window longer than 12 hours 

could causes failure of  the 4DVAR assimilation (Pires et al 1996 , Lawless et al 

2005, Li , Navon et al 1993). Overcoming the problem and increasing the length of 

the assimilation window, thus enabling more data to be assimilated, is an open 



problem remaining  to be solved.   

 

Figure 6 shows the history of the minimization of  the cost function and its gradient 

during the POD 4DVAR experiment. The reduction of the cost function is more than 

that obtained in the 4DVAR experiment. The gradient is reduced by more than 3 

orders in magnitude.  

 

Figure 7 shows the history of the minimization of  the cost function and its gradient 

during the adaptive POD 4DVAR experiment. The cost function is reduced much 

more than in either  4DVAR or  POD 4DVAR experiments. The final value of the 

cost function obtained is about 1/20 of that of the first guess.  

 

Figure 8 shows RMSEs of the three experiments comparing to the true state. The 

POD 4DVAR results have smaller errors than those of 4DVAR in term of upper layer 

thickness. The adaptive POD 4DVAR yields upper layer thickness results that turn out 

to have the smallest errors. For the zonal current field, the adaptive POD 4DVAR has 

also the smallest errors, while 4DVAR and POD 4DVAR have larger errors than the 

background. 

 

Figure 9 shows a comparison between the true state and numerical results obtained 

from POD-4DVAR and adaptive POD-4DVAR at the initial time. It shows that the 

results from adaptive POD-4DVAR are better compared to those obtained with  

POD-4DVAR. The results appear to be sufficiently close to the true state for the long 

assimilation window. 

 

5.4 Comparison of computational cost 

The computational cost of POD 4DVAR and adaptive POD-4DVAR is much cheaper 

than that of the full 4DVAR. Since the POD model and its adjoint model are much 

smaller in size than their full order counterparts, the integrations of POD model and 

its adjoint model are extremely fast and require only less than 1/100 computer time of 



the full order models. It also preconditions the minimization process. Moreover, if one 

is using the adaptive POD technique approximately it turns out to be the best one 

amongst the three experiments in terms of both computational time and the 

approximation to the true state of the results. However, one should keep in mind that 

this adaptive POD method may not applicable for any case. 
 

6. Conclusions and discussions 

In this paper, we proposed a reduced order approach to 4DVAR using POD. The 

approach not only reduces the dimension of the control space, but also reduces the 

size of the dynamical model, both in dramatic ways. This approach also entails a 

convenient way of constructing the adjoint model.  Further, an adaptive POD 

4DVAR is also proposed. To test the POD approach to 4DVAR, a reduced-gravity 

tropical Pacific model is used to perform identical twin experiments in which 

conventional 4DVAR, POD 4DVAR and adaptive POD 4DVAR are tested and 

compared to each other. The main conclusions drawn from this study are: 

 The POD model can accurately approximate the full order model with much 

smaller size; 

 The POD 4DVAR has the potential to improve performance of 4DVAR with  

much smaller computation and memory requirements; 

 The POD 4DVAR has the limitation that the optimal solution can only be sought 

within the space spanned by POD basis of background fields. When observations 

lay outside of the POD space, the POD 4DVAR solution may fail to fit 

observations sufficiently; 

 The above limitation of POD 4DVAR can be improved by implementing  

adaptive POD 4DVAR, with few additional computational time requirements; 

 For a long assimilation window, 4DVAR may fail due to bad conditioning or due 

to occurrence of multiple-minima while the POD 4DVAR and adaptive POD 

4DVAR can  provide a potential tool to overcome this problem to some extent; 

 This study shows that further research efforts in this direction are worth pursuing 

and may lead ultimately to a practical implementation of POD-4DVAR   in 



operational NWP and ocean forecasts.  
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Parameter Value Remarks 

Reduced gravity 'g 2107.3 −×   

Wind stress drag coefficient DC  3105.1 −×  

150 m Mean depth of upper layer  H

Density of air 1.2 kg m   aρ 3−

Density of seawater  0ρ 3−1025 kg m

A  750 m2 sec-1 Coefficient of horizontal viscosity 

α  Coefficient of bottom friction 5105.2 −×  

 
Table 1 Model parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

RMSE of  (m) h

RMSE of h 95% energy 99% energy

5 snapshots 1.31539011 0.88490134

20 snapshots 1.29849041 0.88701826

30 snapshots 1.27734923 1.07926083

        

 RMSE of  (m/s) u

RMSE of u 95% energy 99% energy

5 snapshots 0.00761431 0.00669807

20 snapshots 0.00680718 0.00542305

30 snapshots 0.00711650 0.00504097
        
Table 2 RMSE as to 5 snapshots, 20 snapshots and 30 snapshots for different captured energy; (a) 
upper layer thickness , (b) the zonal current velocity . uh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Correlation of  h

Correlation of 

h     

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

5 snapshots 95.8 98.6 99.3 97.9 99.4 96.1 98.8 98.6 98.8 99.6 99.0 99.9

20 snapshots 98.7 99.3 99.6 99.3 98.9 98.0 98.7 99.3 99.6 99.6 99.4 99.5

30 snapshots 98.7 99.4 99.6 99.4 99.2 98.2 98.5 99.3 99.6 99.6 99.5 99.3

        

Correlation of  u

Correlation of 

     

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

u

5 snapshots 84.2 96.2 98.5 92.1 98.8 92.2 97.6 97.0 93.4 97.5 93.6 99.2

20 snapshots 97.3 98.6 99.0 98.4 96.9 97.9 99.0 98.9 99.0 98.4 98.4 98.9

30 snapshots 97.1 98.4 98.5 98.8 96.7 97.3 99.0 99.2 98.2 98.7 97.8 98.4

 
Table 3 Correlation as to 5 snapshots, 20 snapshots and 30 snapshots for upper layer thickness  
and zonal current velocity , energy captured 99%. 
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Figure 1 The POD modes capture energy: (a) 5 snapshots, (b) 20 snapshots, (c) 30 snapshots; 
black line: the upper layer thickness  (m), red line: zonal current velocity  (m/s), and 
blue line: meridional current velocity  (m/s). 
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Figure 2 Evolution of the cost function and gradient in standard 4DVAR, (a) cost function (b) 
gradient as a function of the number of minimization iterations. 
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Figure 3 Evolution of the cost function and gradient in POD-4DVAR, (a) cost function (b) 
gradient as a function of the number of minimization iterations. 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

 
 
 
Figure 4 The error about upper layer thickness  (m) in the initial time between (a) the 
background state and the true state, (b) the 4DVAR and the true state, (c) the POD-4DVAR and the 
true state. 
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Figure 5 Evolution of the cost function and gradient in standard 4DVAR, (a) cost function (b) 
gradient as a function of the number of minimization iterations 
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Figure 6 Evolution of the cost function and gradient in POD-4DVAR, energy captured 99% (a) 
cost function (b) gradient as a function of the number of minimization iterations. 
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Figure 7 Evolution of the cost function and gradient in adaptive POD-4DVAR: (a) cost function (b) 
gradient as a function of the number of minimization iterations 
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Figure 8 RMSEs of the results comparing to the true state. 

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Figure 9 In case of 60 snapshots, energy captured 99%, the true state and the reduced order 
approximation for upper layer thickness  (m) in the initial time. black isoline: true state, red 
isoline: POD-4DVAR approximation, blue isoline: adaptive POD-4DVAR approximation. 
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