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Abstract. We give a short proof of the fact that the Chern classes for singular
varieties defined by Marie-Hélène Schwartz by means of ‘radial frames’ agree with
the functorial notion defined by Robert MacPherson.

Dedicated to Marie-Hélène Schwartz

1. Introduction

In the mid-60’s, Marie-Hélène Schwartz ([Sch65a], [Sch65b]) defined a notion of
Chern classes for singular varieties in relative cohomology, or, via Alexander duality,
in homology with integer coefficients. For this purpose she used obstruction theory
applied to frames of vector fields with controlled behavior along the singularities.

Soon thereafter, the work of Alexander Grothendieck aimed at proving a ‘discrete
Riemann-Roch theorem’ was at the origin of a conjecture of existence (in characteristic
zero) of a functorial theory of Chern classes, in terms of a natural transformation from
the functor of constructible functions to a good homology theory. This conjecture is
known under the name of ‘Deligne-Grothendieck conjecture’. It was solved in the 70’s
by Robert MacPherson [Mac74], thereby yielding another notion of Chern classes for
singular varieties.

MacPherson’s work was independent from Schwartz’s, yet the two notions had
points in common: both classes specialize to the usual Chern class on non-singular
varieties; and Schwartz’s result, extending the Poincaré-Hopf theorem to singular
varieties, may be viewed as a facet of the functoriality satisfied by MacPherson’s
classes.

It was then natural to conjecture that these notions should agree. In 1979 this
was proved to indeed be the case, by Schwartz and the second-named author of the
present article:

Theorem 1.1 ([BS81]). MacPherson’s and Schwartz’s Chern classes are equal.

The proof was obtained by relating indices of radial frames and Schwartz classes
to key ingredients in MacPherson’s construction of his classes, namely the local Euler
obstruction and Chern-Mather class.

In this paper we recover the equality of Schwartz and MacPherson classes more
directly, without the aid of these other invariants of singularities. The new point of
view was inspired by a new expression for the functorial notion of Chern class in terms
of classes defined for nonsingular (but possibly noncomplete) varieties, obtained by the
first-named author [Alu06]. In fact, further improvements have made the argument
independent of that reference, so the version presented here is self-contained.
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In §2 we observe that a class defined for (possibly singular) varieties X necessarily
agrees with the functorial notion if

– it may be written as a sum of contributions from pieces of a stratification
of X;

– the contribution of a nonsingular stratum S is preserved through stratification-
preserving morphisms; and

– the class agrees with the Chern class of the tangent bundle for nonsingular,
complete varieties.

In §3 we observe that the classes defined by Marie-Hélène Schwartz satisfy these
requirements, and the equality with MacPherson’s classes follows then immediately.

2. A characterization of functorial Chern classes

In this section we work over an arbitrary algebraically closed field of characteristic
zero, and in the Chow group A∗. The results hold a fortiori for complex varieties, in
homology.

2.1. Let c̃(X) ∈ A∗X be a class defined for all (possibly singular) varieties X, as a sum
of contributions from a decomposition of X as a finite disjoint union of nonsingular
(possibly noncomplete) varieties Si:

X = qiSi ; c̃(X) =
∑

i

c̃(Si, X) ;

we say that such decompositions are admissible (for c̃). As we will see, in some cases
every decomposition of X as a finite disjoint union of nonsingular subvarieties may be
admissible. In other situations, more restrictions may have to be placed on admissible
decompositions: for example, the varieties Si may be required to be elements of a
Whitney stratification of X.

We assume that strata of a normal crossing divisor form an admissible decomposi-
tion. More precisely: if D is a divisor with simple normal crossings and nonsingular
components Dj, j ∈ J in a nonsingular variety Y , then we assume that

qI⊂JD◦
I

is an admissible decomposition of Y , where D◦
I denotes

(∩j∈IDj) r (∪j 6∈IDj) .

(For example, D◦
∅ is the complement of D in Y .)

This will be clearly satisfied for the decompositions we will consider.

Definition 2.1. We say that the datum of a class c̃(X) ∈ A∗X as above for all
algebraic varieties X is locally determined if the following condition holds:

– If f : Y → X is a proper morphism, S, resp. T := f−1(S) are members of
admissible decompositions of X, resp. Y , and f restricts to an isomorphism
T → S, then

f∗c̃(T, Y ) = c̃(S, X) .



SCHWARTZ CLASSES AND MACPHERSON CLASSES AGREE 3

Example 2.2 (The functorial class). We denote by c∗(X) ∈ A∗(X) the class defined
by MacPherson in [Mac74] (see [Ful84], §19.1.7, for the adaptation of the definition
to the Chow group A∗(X), and [Ken90] for the extension to arbitrary algebraically
closed fields of characteristic zero). Recall that this class is the value

c∗(X) := c∗(11X) ∈ A∗X

taken on the constant characteristic function 11X by a natural transformation

c∗ : F ; A∗

from the functor of constructible functions to the Chow group functor. Here, F (X)
is the group of constructible, integer valued functions on X; if g : Y → X is a proper
map, the push-forward g∗(ϕ) of a constructible function ϕ =

∑
Z mZ11Z ∈ F (Y ) is

defined as the function on X whose value at p ∈ X is

g∗(ϕ)(p) :=
∑

mZχ(g−1(p) ∩ Z) .

Here χ denotes topological Euler characteristic, over C; for the extension to other
fields of characteristic zero see [Ken90] or [Alu06].

For S any (in particular, any nonsingular) subvariety of a variety X, let

c∗(S, X) := c∗(11S) ∈ A∗X .

Then every decomposition of X as a finite disjoint union of nonsingular subvarieties
is admissible for c∗. Indeed, if X = qiSi then 11X =

∑
i 11Si

; hence

c∗(X) = c∗(11X) =
∑

i

c∗(11Si
) =

∑
i

c∗(Si, X) .

Further, c∗ is locally determined. Indeed, let f : Y → X be a proper map, restrict-
ing to an isomorphism T → S. Then

f∗c∗(T, Y ) = f∗c∗(11T ) = c∗f∗(11T ) = c∗(11S) = c∗(S, X)

since c∗ is a natural transformation, and by definition of push-forward of constructible
functions.

Theorem 2.3. Suppose that c̃ is locally determined, and that

c̃(V ) = c(TV ) ∩ [V ]

for every nonsingular complete variety V . Then c̃ agrees with the functorial class c∗.

Proof. Let X = qiSi be an admissible decomposition of X for c̃; it suffices to show
that c̃(Si, X) = c∗(Si, X).

If S is an element of the decomposition, let S be its closure in X, and let f : Y → S
be an embedded resolution of S, such that the complement of T := f−1(S) in Y = T
is a divisor D with normal crossings and nonsingular components Dj, j ∈ J . Since
both c̃ and c∗ are locally determined, it suffices to prove that

c̃(T, Y ) = c∗(T, Y ) ∈ A∗Y .

Now
Y = qI⊂JD◦

I ,

hence
c̃(Y ) =

∑
I⊂J

c̃(D◦
I , Y ) ,
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from which the ‘inclusion-exclusion’ principle gives

c̃(T, Y ) = c̃(D◦
∅, Y ) =

∑
I⊂J

(−1)|I|c̃(DI , Y ) ,

where DI = ∩j∈IDj, and c̃(DI , Y ) denotes the sum
∑

K⊃I c̃(D◦
K , Y ). Each DI is

complete and nonsingular (since D is a divisor with simple normal crossings), and
the inclusion ι : DI → Y is proper. For K ⊃ I,

c̃(D◦
K , Y ) = ι∗c̃(D

◦
K , DI)

since c̃ is locally determined, and hence

c̃(DI , Y ) =
∑
K⊃I

ι∗c̃(D
◦
K , DI) = ι∗c̃(DI) = ι∗(c(TDI) ∩ [DI ]) .

The same expression holds for c∗(T, Y ), by the same token, concluding the proof. �

3. Schwartz classes

We now assume that the ground field is C, and work in homology with integer
coefficients; the considerations in §2 apply to this context, via the canonical map
from Chow group to homology.

3.1. Denote by c̃ the class defined by Marie-Hélène Schwartz in [Sch65a], [Sch65b].
This class agrees with the total (homology) Chern class of the tangent bundle for com-
plete nonsingular varieties, and is computed in general by adding terms contributed
by strata Si of a Whitney stratification of X:

c̃(X) :=
∑

i

c̃(Si, X) .

That is, Whitney stratifications are admissible decompositions for c̃.
We briefly recall the definition of the Schwartz classes. The variety X is embedded

in a nonsingular variety M , stratified by M r X and by the strata Si of X. For
x ∈ M , let E(x) be the subspace of the tangent space TxM consisting of vectors
which are tangent to the stratum of M containing x. The collection of the subspaces
E(x) determines a subspace E of the tangent bundle TM . It is no longer a bundle
but the notion of section is well defined: a section of E is a section of TM with value
in E. One considers then the space Er of ordered r-frames of vectors tangent to the
strata of M . It is a subspace of the bundle TrM of ordered r-frames, associated to
TM .

One also considers a triangulation K of M compatible with the stratification, and
a cellular decomposition D of M , dual to K. The cells of D are transverse to the
strata.

In dimension r − 1, the Schwartz class is defined as the obstruction to the con-
struction of a section of Er on X. It is obtained by constructing a special section
Zr of Er, called a radial r-frame. It is a section of TrM without singularities on the
skeleton of (real) dimension (2m− 2r + 1) of D and with isolated singularities on the
2(m− r + 1)-skeleton, The construction is performed by induction on the dimension
of the strata:

Strata of complex dimension (strictly) less than (r− 1) do not appear. Consider a
stratum of (complex) dimension (r − 1). The cells of (real) dimension 2(m − r + 1)
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intersect such a stratum in a point (or in the empty set). On such a cell, the r-frame
is constructed as a radial field, and hence of index +1. Since dimC S = r− 1, one has
then:

c̃(S, X) =
∑

Kα⊂S

Kr−1
α

Suppose that the construction has already been performed on strata with dimen-
sion less than dim S. The r-frame Zr is defined on strata of the boundary ∂S with
singularities aj. Denote by U the “cellular” neighborhood of ∂S, consisting of cells
of D which are dual to the simplices in ∂S. The construction is performed in such a
way that in U the extension of Zr, still denoted by Zr, has no other singularities than
the points aj. By the construction of radial frames, as proved in Schwartz [Sch00],
the r-frame Zr satisfies the following properties:

1) The index I(Zr, aj) is the same, computed as a section of the tangent bundle to
the stratum of aj or as a section of TM ,

2) The frame Zr is pointing outwards from the cellular neighborhood U . This
means that on ∂U ∩ S, the r-frame Zr is tangent to S and pointing inwards towards
S r U ,

3) Any two radial frames are homotopic on ∂U ∩ S, as section of TrS.
In particular, this last point is proved locally in [Sch00], §6.3 (Theorem 6.3.2,

Homotopie entre deux champs radiaux au voisinage d’une strate) and globally in
[Sch00], Chapter 9 (Theorem 9.1, Théorème global d’homotopie).

One then extends Zr, which is defined in S ∩U , inside S with isolated singularities
a lying in the intersection of S with the D-cells of dimension 2(m− r + 1). In other
words, the points a are in the intersection of S with the D-cells that are dual to the
K-simplices of dimension 2(r − 1), contained in S r U .

The contribution c̃(S, X) of a stratum S is computed in terms of indices I(Zr, a)
at these singular points a of Zr, lying in S r ∂S:

c̃(S, X) :=
∑

Kα⊂Sr∂S

µαKr−1
α

where the simplices Kα have dimension 2(r − 1) and

µα =
∑

a∈Dα∩S

I(Zr, a) ,

where the cell Dα is dual to Kα.
According to Steenrod [Ste51], §34, two homotopic fields of frames produce ho-

mologous cycles. A consequence of properties 2) and 3) is therefore the following
Lemma:

Lemma 3.1. The contribution c̃(S, X) does not depend on the construction of the
radial frame on the strata of ∂S. In other words, any two radial frames Zr and Z ′

r

defined on S ∩ ∂U lead equivalent cycles∑
Kα⊂S

µαKr−1
α ∼

∑
Kα⊂S

µ′
αKr−1

α

Note that, via the Alexander isomorphism H2(r−1)(S) ∼= H2p(M, M r S), with
p = m− r + 1, the class c̃(S, X) corresponds to the class denoted ĉ2p(S) in Schwartz
[Sch00].
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By Theorem 2.3, in order to prove Theorem 1.1 it suffices to show that Schwartz’s
Chern classes are locally determined, which is the result of the following Lemma:

Lemma 3.2. If f : Y → X is a proper morphism, S and T := f−1(S) resp. are mem-
bers of admissible decompositions of X, Y resp., and f restricts to an isomorphism
T → S, then

f∗c̃(T, Y ) = c̃(S, X) .

Proof. Denote by ∂S and ∂T the boundaries of S and T respectively, unions of strata
of X and Y , and denote by k the common (complex) dimension of S and T . Assume
that the construction of the Schwartz classes of X and Y has been performed by in-
duction on the dimension of strata up to dimension k−1, included. This construction
produces two r-frames: Zr, defined on a cellular neighborhood U of ∂S pointing out-
wards from U ; and Wr, defined on a cellular neighborhood V of ∂T pointing outwards
from V . We therefore have the following situation:

On S ∩ ∂U the r-frame Zr is tangent to S and pointing into S r U . On T ∩ ∂V ,
the r-frame Wr is tangent to T and points into T r V . Under the hypothesis of the
statement, one has an isomorphism of pairs (S r U, S ∩ ∂U) ∼= (T r V, T ∩ ∂V ). The
statement follows by applying Lemma 3.1. �
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