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1 Introduction

Price volatility and high trading volume are pervasive features of asset

markets that are difficult to capture with standard equilibrium asset pricing

models. For well over a decade financial economists have investigated the role

that learning plays in explaining these asset market properties. Notable early

examples in the literature include Arthur et al. (1997); Brock and Hommes

(1998); Marcet and Sargent (1989); Sargent (1993) and Timmermann (1993,

1996). Of the many approaches used, most make either strong assumptions

to obtain analytical solutions or employ ad hoc behavioral assumptions about

agents.

In this paper we use an equilibrium asset pricing model consistent with the

standard asset pricing theory of Lucas (1978), but we allow for heterogeneous

agents who must learn essential aspects of aggregate markets while making

optimal decisions based upon the best available information. This approach

implies a complex interaction between the learning mechanism and the market

dynamics of the model. 1

The complexity of this problem suggests that few analytical results will be

available and that numerical methods will be necessary. Agent-based models

(Arthur et al., 1997; Chiarella et al., 1998; LeBaron et al., 1999) often use

myopic agents who use ad hoc learning rules and do not attempt to solve an

optimal first-order condition to a dynamic optimization problem. Although

these models are quite promising for analyzing complex market arrangements,

Kercheval).
1 In a similar context, Sargent (1993) notes, “Verifying the convergence of the
system is technically difficult because the firms are learning about a moving target,
a law of motion that is influenced by their own learning behavior ( pg. 123). ”
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the market dynamics that emerge from such models are difficult to interpret

because agent behavior is often not consistent with established asset pricing

theory. Evans and Honkapohja (1995, 2001), Adam et al. (2006), Guidolin

and Timmermann (2007) and Carceles-Poveda and Giannitsarou (2007b) are

able to derive some analytical results in learning models by assuming that

agents know their correct demand functions even though they do not know

the correct aggregate pricing function for the asset. As a consequence, agents

do not trade at market clearing prices during the learning process so that

market dynamics are greatly simplified. Scheinkman and Xiong (2003) and Li

(2007) present two agent models that do allow for trading during the learning

process but, in order to achieve tractable analytical results, the models use

specialized assumptions about agents’ beliefs of the diffusion process driving

dividends.

Our point of view is that agents are forward-looking and good optimizers

but find themselves in an environment where they have insufficient information

to deduce equilibrium asset pricing functions. In particular, even though agents

may know the distribution of dividends and some aggregate information such

as total market volume and the supply of assets, they cannot observe the asset

holdings or preferences of other agents. It is likely, therefore, that traders will

form differing views of the distribution of future asset prices and are likely to

trade with one another based upon those differing beliefs.

In our model a single stock paying a stochastic dividend is traded and

we assume that agents know only their own parameters and the aggregate

dividend distribution. We study each agent’s optimization problem in order

to discover how they behave within this context. Specifically, we are interested

in whether markets will evolve toward equilibria as agents observe and learn
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market characteristics.

This contrasts with the usual approach in which the market equilibrium is

computed without consideration for how the agents find it—in effect, assuming

that agents have full information about the market and all other agents. In

our context, since the market clearing price will depend not only upon the

observable dividend but also upon unobservable variables such as the holdings

of the other agents, it is not clear in advance that agents will be able to solve

their individual optimization problems in each time period.

We resolve this difficulty by allowing our agents to make a “pragmatic

compromise” in the computation of their asset demand functions. Specifically,

our agents approximate the market clearing function with a function of the

aggregate dividend alone. Our agents operate under the hypothesis that the

distribution of future market clearing prices will depend, at equilibrium, only

on the dividend process—just as is the case in the homogeneous agent Lucas

model. This hypothesis will be eventually satisfied if the equilibrium pricing

function is independent of the wealth distribution or if the market converges

over time to a no-trading equilibrium (Judd et al., 2003).

With this approach, agents can in principle solve their Euler equations for

the optimal consumption and stock demand in each time period. The trader’s

learning problem becomes one of finding the correct equilibrium pricing func-

tion with which to compute lifetime expected utility in her dynamic opti-

mization problem. Traders begin with an initial guess of the pricing function

and update their guess over time using some learning algorithm based upon

observed market prices. In this situation, for a given learning mechanism, we

want to study whether agents will eventually learn the correct equilibrium pric-
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ing function that forecasts actual market clearing prices in some no-trading

equilibrium and, if so, what are the price and holdings dynamics along the

way?

Although we assume that our agents are able to solve any well-posed math-

ematical problem, it appears that with multiple distinct agents an exact an-

alytical solution of the behavior of this market is out of reach. Indeed, even

numerical solutions are difficult because the individual optimal demand func-

tions must be computed in each time step to find the market clearing prices.

However, as described in this paper, it turns out that the case of log utility can

be solved completely. These results both stand on their own and are useful as

a point of comparison to help validate numerical simulation results for non-log

utility cases.

What makes the log-utility case analytically tractable is that the pricing

function is not needed in the agent’s optimization problem because it drops

out of the agent’s Euler equation. Therefore the learning process is a poste-

riori irrelevant to the market evolution. Indeed, our log-utility results apply

independently of how the agents think they should forecast prices, so our re-

sults apply to any single asset, log-utility, heterogeneous agent Lucas economy.

Since the resulting pricing function is the familiar one coming from the homo-

geneous agent model, this paper also provides an extension of the applicability

of that function to a more general heterogeneous, limited-information setting.
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2 An equilibrium model with heterogeneous agents and learning

Consider the standard Lucas asset pricing model (Lucas, 1978; Lyungqvist

and Sargent, 2004) with N possibly heterogeneous agents and a single risky

asset with period tmarket clearing spot price denoted Pt. The number of shares

of the asset is normalized to be N and the asset pays a random dividend Dt

per share determined solely by the observed state of the world at the beginning

of each period t. All agents are assumed to know the distribution of dividend

payments across states.

There is no production in this economy so in time period t agent i will

choose optimal consumption ci,t and investment in the asset si,t+1 based upon

the agent’s preferences and period budget constraint

ci,t + Pt si,t+1 ≤ wi,t = (Pt +Dt) si,t + ei, ∀ t, (1)

where wi,t is the agent’s period t wealth and ei is a constant endowment

received by the agent each period.

Agent i begins period t knowing her asset holdings si,t and endowment

ei. Next, today’s stock dividend Dt is announced to all agents. At this point

the agent does not know her wealth because the market price Pt has yet to

be determined through market clearing. Each agent must first compute her

optimal demand as a function of price, si(P ), representing the optimal number

of shares demanded at any given price Pt. These functions then determine the

unique price P that clears the market according to

N∑
i=1

si(Pt) = N. (2)
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The actual mechanism of market clearing is not important. We imagine that

there is some market maker who receives the demand functions from each

agent and publicly declares the market price satisfying (2).

Each agent is assumed to be an expected utility maximizer with constant

relative risk aversion preferences and risk aversion γi > 0. The demand func-

tion must be solved to optimize expected utility,

max
{ci,τ ,si,τ+1}∞τ=t

Et
∞∑
τ=t

βτ−ti

c1−γii,τ − 1

γi
(3)

subject to the budget constraint (1) and initial conditions for wealth, asset

holdings and dividends. The agents’ discount factors, βi ∈ (0, 1), may differ

and the expectation in (3) is over the distribution of dividends and is condi-

tional upon the information available to the agent at the beginning of period

t.

For such markets with heterogeneous agents, the existence and uniqueness

of equilibria, or even how to compute them, may not be clear (Frydman, 1983).

Furthermore, under the dynamics of trading by utility-maximizing agents who

need to learn aggregate properties of the market, it is not clear whether the

market will converge to an equilibrium. Our primary interest lies in under-

standing this market dynamics, which includes describing the equilibria, as

well as how the market moves when away from equilibrium. First, we need to

be precise about what we mean by an equilibrium.

Denote by St ∈ <N the vector of all agents’ time-t asset holdings, which

we call the “distribution of holdings”. We have explicitly included the time

subscript to emphasize that the distribution of holdings may change over time.
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Let µi denote the triple of each agent’s parameters βi, γi, and ei, all assumed

constant in time, and let M denote the vector of parameters (µ1, . . . , µN).

A rational expectations equilibrium (REE) for this economy consists of

an aggregate pricing function P ∗(Dt,St;M) for the risky asset and a set

of agent consumption demand functions ci,t = ci(Dt,St;M) and asset de-

mand functions si,t+1 = si(Dt,St;M) such that the asset market clears at

Pt = P ∗(Dt,St;M), the budget constraint is satisfied for each agent, and the

demand functions solve the agents’ optimization problems.

The REE pricing and demand functions are useful to the omniscient econ-

omist, but are not available to the agents themselves who do not observe the

quantities St andM. Therefore, in general, agents will not be able to compute

the REE functions but must instead arrive at equilibrium, if at all, by other

means.

We can view the individual agent’s optimization problem in the usual re-

cursive formulation which leads to the standard Euler equation

Pt = Et

βi
(
ci,t+1

ci,t

)−γi
(Pt+1 +Dt+1)

 . (4)

Using the budget constraint (1) to eliminate c, dropping the subscript i, and

using the notation s = st, s
′ = st+1, and similarly for the other variables, we

may rewrite (4) as

P = βE

[(
s(P +D) + e− s′P
s′(P ′ +D′) + e− s′′P ′

)γ
(P ′ +D′)

]
. (5)

Each agent must solve for consumption and asset demand functions that sat-

isfy this optimality condition.
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In general, to evaluate the integral represented by the conditional expecta-

tion operator Et in the Euler equation and to compute their demand functions,

agents must know the distribution of future spot prices Pt+1 of the asset. This,

in turn, generally requires that the agents have a complete knowledge of the

other agents’ asset holdings, St, and preferences, M. 2

Before continuing with the general model, it is useful to discuss an impor-

tant special case for which the REE is easy to compute. Suppose all agents

are identical with log utility and no endowments (βi = β, γi = 1, si,t = 1,

and ei = 0, for all i and t) and all agents are aware of this. Knowing they are

identical, agents can deduce that there will be no asset trading and that the

budget constraint will thus imply that ci,t = Dt and si,t+1 = si,t = 1 for each

agent. The Euler equation (4) simplifies to

Pt = Et

[
βi

(
Dt

Dt+1

)
(Pt+1 +Dt+1)

]
(6)

and it is easy to check that the REE aggregate pricing function satisfying this

equation is P ∗(Dt) = β
1−β Dt.

Note that the aggregate distribution St is degenerate in the homogeneous

agent case, so does not appear in the pricing function P ∗(Dt), which now

depends on Dt alone. 3 Also, the demand function s′ has vanished from the

2 Nontrivially, each agent also would have to know that all other agents know that
all agents know St and M and behave optimally (Frydman and Phelps (1983);
Townsend (1983)). The Lucas (1975) argument that this degree of knowledge is
applicable in cases where the aggregate distributions had already settled down to
their stationary values and were thus observable by all agents seems to have been
embraced by most researchers. However, Frydman (1983) argues that this reasoning
is circular because it implies that “the markets are in the rational expectations
equilibrium if and only if every agent forms its expectations according to its rational
expectations equilibrium forecast function (pg. 111).”
3 When the parameters M are fixed, we may always omit them as arguments in
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Euler equation and is no longer needed to determine the market clearing price.

Since the REE pricing function is known a priori, the market clearing price

is known by all agents as soon as the dividend is announced so there is no

need to compute demand functions for a range of prices. This is a significant

simplification of the problem and this elegant solution is often employed in

the financial economics literature. But its operational validity is questionable

in the sense that only if the agents know that all other traders are identical to

themselves can they justify setting ci,t = Dt in their Euler equation (Frydman,

1983).

When agents lack the certainty that they are identical or, as we assume,

agents do not know the aggregate distribution of holdings St, they cannot

compute the equilibrium pricing function because it depends upon unobserv-

able variables. The situation is even worse away from equilibrium because

agents’ pricing functions must then also depend on the pricing functions of

all the other agents, since those functions help determine market demand

and therefore the market clearing price. In other words, as ? notes, “A right

forecast must take into account the possibly wrong forecasts of others (pg.

1254).” These are fundamental stumbling blocks for defining the behavior of

heterogeneous agents in limited-information Lucas-style asset models.

Our solution to this problem is to allow agents to use private estimates

p̃i,t+1(Dt+1) of the aggregate pricing function in their Euler equations (4).

We assume that these estimates depend upon Dt alone. Although agents are

aware that there are unobserved variables St and functions {p̃j,t}j 6=i influencing

the pricing and demand functions. The dependence on fixed parameters M is of
interest to the economist, not the agents.
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market prices away from equilibrium, they operate under the hypothesis that

the market will converge to an equilibrium so that the dependence on these

variables vanishes with time. In other words, our agents hypothesize that all

agents’ personal pricing functions will converge to the REE pricing function

and that the distribution of holdings St will converge to a constant distribution

at equilibrium. Thus, it is pragmatic for the agents to use the approximation

p̃i,t+1(Dt) for the aggregate pricing function.

This provides agents with enough information, in principle, to solve for

their optimal consumption and asset demand functions ci,t = c̃i(si,t, Dt, P | p̃i)

and si,t+1 = s̃i(si,t, Dt, P | p̃i), where we have adopted the notation c̃i and s̃i

to denote the ith agent’s demand functions. Note that these demand functions

are conditional on the agent’s estimated pricing function p̃i,t+1.

We assume that our agents are aware that their aggregate pricing function

estimates p̃i,t+1 may not be accurate so they will attempt to improve upon

them by observing actual market prices over time. The actual market price

Pt will in general depend not only on Dt but also on the private quantities

St,M, and all the agents’ personal pricing functions p̃i,t+1. Therefore, market

dynamics will depend upon the chosen learning mechanism that drives the

time evolution of p̃i,t+1, as well as the other parameters of the agents. In

general, it is not clear that such a market will reach an equilibrium. 4

Our model as described above, with the use of recursive least squares learn-

ing, can be solved for multiple agents using a discrete numerical solution of

each agent’s optimization problem in each time step. Preliminary work (Cul-

4 ? argue that learning is an unsatisfactory foundation for rational expectations
but ? provide an aggregation procedure to construct a consensus agent that allows
them to analyze equilibrium characteristics in models with heterogeneous beliefs.
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ham, 2007) suggests that convergence to the REE is quite robust. In the next

section we analyze the log-utility case which is independent of the learning

mechanism of the agent and thus admits an analytical solution. Beyond it’s

own interest, this will be useful as a base case for comparison with the purely

numerical simulation results when agents are allowed to possess more general

utility functions.

3 Analytical results for the log-utility, zero endowment case

Suppose all N > 1 agents have CRRA utility with a common risk aversion

and zero endowment (γi = γ > 0 and ei,t = 0 for all i and t) but possibly

differing discount factors βi and initial holdings si,0.

We assume the aggregate supply of stock is N shares, and that agents have

limited information in the sense that they may not make any assumptions

about the preferences or holdings of the other agents when solving for their

optimal consumption in each time period. Agents are presumed to have private

estimates p̃i(D) of the pricing function, but we impose no assumptions yet on

what these are or how they evolve.

Using the budget constraint to substitute for c, the ith agent’s Euler equa-

tion (4) is

P

(si (P +D)− P s̃i(si, D, P ))γ
=

βiEt

[
p̃i +D′

(s̃i(si, D, P ) (p̃i +D′)− p̃i s̃i (s̃i(si, D, P ), D′, p̃i))γ

]
. (7)

Notice that the unknown demand function s̃i appears in (7) in a highly non-
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linear way. Nonetheless, agents must solve this equation for s̃i in order to be

able to participate in the implicit price-calling auction used to arrive at the

market clearing price.

Remarkably, in the log-utility case, γ = 1, (7) turns out to have the simple

explicit solution

s̃i(si, D, P ) = βi (1 + (D/P )) si. (8)

Critically, and unlike the general case for γ 6= 1, this solution has the special

property that it does not depend upon the agent’s estimated pricing function

p̃i nor directly upon the distribution of holdings S. This is a very important

feature of log utility and is what makes this special case analytically tractable.

Consequently, given an announced asset price, agents can act optimally

without knowing the distribution of the aggregate state variables because their

optimal asset demand functions are independent of the mechanism that they

have chosen for learning the equilibrium pricing function. The agents them-

selves do not know this and so believe that the distribution S affects the

market clearing prices and that their own demand functions are only approxi-

mations based upon the simplifying assumption that aggregate states may be

ignored during the learning process. We, the omniscient modelers, however,

know that every agent has log utility, and so we can analyze how prices and

holdings will evolve as these agents behave optimally in each time step.

The market clearing price, which we now denote Pm, is determined from

the market clearing condition

N∑
i=1

s̃i(si, D, Pm) = N. (9)
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Substituting the demand function (8) for s̃i and solving for the market clearing

price, gives

Pm =

∑N
1 βj sj

N −∑N
1 βj sj

D. (10)

Substituting (10) into the demand function (8) gives the agent’s next period

holdings at market clearing prices as

s′i = s̃i(si, D, Pm) = βi

(
N∑N

1 βj sj

)
si. (11)

Although the agent’s demand function (8) in the log utility case does not

depend directly upon the distribution of assets S, it does depend upon this

distribution indirectly through the observed market clearing price (10). Also,

s′i does not depend upon the dividend D except indirectly through the market

price. The market clearing price and stock holdings will evolve according to

the dynamical system described by (10) and (11).

Conditional on the number of agents N and the discount factors βi, the

demand function (11) may be written as a function of the asset distribution

S alone. Thus, for all N agents we may write an N -dimensional dynamical

system S ′ = s̃(S) describing how the evolution of holdings is determined by

iteration of the N -dimensional function s̃.

The following theorem establishes that this dynamical system converges

and reports the limiting asset holdings and pricing function.

Theorem 1 Consider a pure exchange economy of N infinitely-lived agents

and N shares of a single risky asset paying stochastic dividend D at the begin-

ning of each period. Each agent maximizes her discounted, expected life-time

utility subject to the period budget constraint ci+P s′i ≤ (P +D) si. All agents
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have log utility and have discount factors βi and initial asset holdings s◦i , where∑N
i=1 s

◦
i = N . Agents know the probability distribution of dividends but not the

asset holdings, discount factors, or utility functions of other agents.

For convenience, order the agents by decreasing discount factor and let k

be the number of agents who share the maximum discount factor β, so that

1 > β = β1 = · · · = βk > βk+1 ≥ · · · ≥ βN > 0.

Then the dynamic behavior of holdings and market clearing prices is given

by equations (10) and (11). This system converges exponentially fast to

P ∗(D) =
β

1− β
D (12)

and

s∗i =
Ns◦i

s◦1 + · · ·+ s◦k
, i ≤ k, (13a)

= 0, i > k. (13b)

Proof: See Appendix.

The theorem states that the asset holdings of all agents with less than the

maximum subjective discount factor converge to zero at an exponential rate.

The asset holdings of the remaining most patient agents, with the highest

discount factor, converge to a limit proportional to the initial holdings of this

subset of agents. The patience of these agents is eventually rewarded by ac-

cumulating all of the wealth in the economy while the impatient agents are
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driven out of the market as their wealth is asymptotically driven to zero. Fur-

thermore, the economy eventually collapses to a set of agents with differing

holdings but a common discount factor. The market clearing price globally

converges to the same rational expectations equilibrium pricing function ob-

tained under the classical and more restricted assumption that agents are

identical and have perfect information.

In the special case where agents (unknowingly) have identical discount fac-

tors but possibly different initial holdings, there is never any trading and the

market clears immediately in the first time step at the familiar rational ex-

pectations equilibrium price

Pm =
β

1− β
D. (14)

3.1 An illustration with two agents

For the special case of two agents with different discount factors β1 > β2 it

is possible to examine the market dynamics geometrically. The asset demand

functions are

s̃i(s) = βi
2si

β1s1 + β2s2

, i = 1, 2. (15)

Using the market clearing constraint s1 + s2 = 2 gives

s̃1(s1) =
β1s1

β2 + (β1 − β2)(s1/2)
(16a)
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and

s̃2(s2) =
β2s2

β1 + (β2 − β1)(s2/2)
. (16b)

These two functions are plotted in Figure 1 for the discount factors β1 =

0.95 and β2 = 0.7. Iteration of the upper function for agent 1, the most patient

agent with the higher discount factor, is illustrated with the arrows showing

that asset holdings will converge to s = 2. Similarly, the asset holdings of

the less patient agent 2 will decrease monotonically to zero along the lower

function. This behavior is common to any choice of discount factors as long

as β1 > β2. When β1 = β2 both graphs are along the diagonal and the asset

holdings of both agents remain fixed and there is no trading.

Since consumption is a fixed share of wealth in the log utility case, the most

patient agent’s consumption increases with investment holdings. Specifically,

for the two agent case, consumption of the more patient agent is given by

c1 =
(1− β1)s1D

1− β2 − (β1 − β2) (s1/2)
(17)

which is increasing and convex in s1. As s1 → 2, c1 → 2D so that the patient

agent eventually consumes all of the dividend payments. Consumption of the

less patient agent converges to zero. If β1 = β2 then ci = siD so the agents

do not trade and simply consume their share of the dividend payments.

Substituting the asset demand functions (16) into the market clearing price

(10) gives

Pm =

(
2β2 + (β1 − β2)s1

2(1− β2)− (β1 − β2)s1

)
D (18)
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which reduces to Pm = β/(1 − β)D when β1 = β2 = β. The price/dividend

ratio Pm/D is increasing and convex in s1. This makes sense since, from (10),

we see that the market price is an increasing function of the weighted average of

the βi’s with the investment shares si/N as weights. As the investment share

of the most patient agent increases, the weight on the highest β increases

making the market price higher. More intuitively, as the most patient agent

becomes wealthier his consumption and investment demands increase driving

up the price of the asset.

4 Conclusion

In this paper we have described a heterogeneous agent, equilibrium asset

pricing model in which agents’ information about the aggregate economy is

realistically limited. In a dynamic equilibrium model agents need aggregate

asset pricing functions in order to solve their Euler equations for their goods

and asset demand functions. To compute the rational expectations equilib-

rium pricing functions, agents need to know the utility functions and asset

holdings of all other agents in the economy. Additionally, agents need to know

that all other agents know this information and use it optimally. This in-

formational requirement is trivial in a homogeneous agent model, since the

aggregate distributions are degenerate, but becomes overwhelming in the het-

erogeneous agent case with non-degenerate aggregate distributions. This leads

to the question of how heterogeneous agents can come to know the equilibrium

pricing function without having access to an unrealistic amount of information

about other agents.

In our model we assume that agents know their own preferences and in-
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vestments as well as the stochastic process driving asset dividends but that

they do not know the preferences and investments of other agents. However,

our agents operate under the hypothesis that, at equilibrium, aggregate dis-

tributions will become stationary so that asset prices will eventually become

independent of these distributions and thus depend only upon the observed

dividend. Consequently, our agents make personal approximations of the equi-

librium aggregate pricing function and base their estimated demand functions

upon those approximations. This is a critical feature that differentiates our

model from many other learning models.

As markets evolve, the consumption and investment decisions of our agents,

which are based upon observed market clearing prices, will be revealed to be

suboptimal as the agents learn that the market clearing prices have deviated

from their expectations. This prompts our agents to update both their approx-

imations to the aggregate pricing functions as well as their demand functions.

During the learning process the market will exhibit complex dynamics that

will depend upon the specific type of learning used by the agents (Carceles-

Poveda and Giannitsarou, 2007a,b).

In general, numerical methods will be required to analyze the dynamics

and convergence properties of such an economy. However, we have derived

analytical results for the special case where all agents have log utility. The

critical feature is that the agents’ pricing function approximations cancel out

of their first-order conditions for the log utility case. This means that the

agents’ consumption and asset demands are independent of the learning rule

that they choose and we are able to completely characterize the resulting

market dynamics and convergence properties for this case.
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The characteristics of the market dynamics and the convergence properties

of models with differing degrees of risk aversion remains an open question.

Preliminary numerical results (Culham, 2007) suggest that convergence to

the rational expectations equilibrium is quite robust.

Appendix. Proof of Theorem 1

It is easy to verify algebraically that the demand function (8) solves the

Euler equation (7), and therefore (10) and (11) describe the market clearing

price and new stock holdings in each time step.

Also, it is easy to see that the market clearing price Pm is given by the

P ∗ in (14) if the stock holdings are such that the only non-zero holdings are

for agents with βi = β. Therefore it remains to prove that holdings globally

converge to the values described by (13).

It is convenient to rewrite the dynamical system (11) in terms of the relative

holdings xi = si/N :

x′i =
βixi∑N
1 βjxj

. (A.1)

Here xj ∈ [0, 1] for all j and
∑
j xj = 1, so the state (x1, . . . , xN) lies on the

(N − 1)-dimensional unit simplex

∆N = {(x1, . . . , xN) ≥ 0 :
∑
i

xi = 1} (A.2)

in the positive orthant of <N . Since
∑
j x
′
j = 1, we can describe the dynamics

as an iteration of the mapping T : ∆N → ∆N where the ith coordinate of

T (x) is defined to be x′i given by (A.1).
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If U ⊂ ∆N denotes the k-dimensional sub-simplex

U = {(x1, . . . , xk, 0, . . . , 0) :
k∑
j=1

xj = 1}, (A.3)

then it is easy to see that every point of U is fixed by T . Likewise, let V denote

the (N − k)-dimensional sub-simplex

V = {(0, . . . , 0, xk+1, . . . , xN) :
N∑

j=k+1

xj = 1}. (A.4)

From (A.1), if xj 6= 0 and βi = βj, then T (xi)/T (xj) = xi/xj. Hence T

always preserves the relative sizes of the coordinates x1, . . . , xk. Therefore the

limiting holdings must be given by (13) if we can show that every forward

T -orbit {T n(x)} converges to U .

Define πU : ∆N → U to be the projection fixing the first k coordinates and

setting the remaining N − k coordinates to zero, and similarly πV : ∆N → V

the projection fixing the last N −k coordinates and setting the first k to zero.

Let ∆N+ = {x ∈ ∆N : πU(x) 6= 0}.

Lemma 1 Define F : ∆N → < by F (x) =
∑
i βixi, where β = β1 and the

βi are ordered as in Theorem 1. Then for any x ∈ ∆N+, F (T n(x)) increases

monotonically with limit β as n→∞.

Proof: F (x) is is simply a weighted average of the β’s, weighted by the x’s.

Using the definition of T , we have, for any x,

F (T (x)) =

∑
i β

2
i xi

F (x)
(A.5)

and so F (x)F (T (x)) =
∑
i β

2
i xi. Also, F 2(x) = (

∑
i βixi)

2.
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Now F (T (x)) ≥ F (x) follows from Jensen’s inequality

φ(
∑
i

βi xi) ≤
∑
i

φ(βi)xi (A.6)

for the convex function φ(x) = x2. The inequality is strict if both πU(x) and

πV (x) are nonzero.

Fix x ∈ ∆N+. If πV (x) = 0 then x ∈ U , T (x) = x, and F (x) = β, so

there is nothing further to prove. Hence suppose πV (x) is nonzero. This means

πU(T (x)) and πV (T (x)) are also nonzero, so F (T n(x)) is a strictly monotone

sequence bounded by β. It must therefore converge to it’s supremum, call it

β∗.

Suppose β∗ < β. By compactness of ∆N , the sequence {T n(x)} has a

convergent subsequence yk = T nk(x) → x∗ ∈ ∆N , and by continuity of

F , F (x∗) = β∗. By the definition of T , (T n(x))i is monotone increasing for

i = 1, . . . , k. Therefore x∗ ∈ ∆N+. Since F (x∗) < β, πV (x∗) 6= 0, and so

F (T (x∗)) > F (x∗) = β∗. (A.7)

However, we also have F (T (yk)) ≤ β∗, and since yk → x∗ this contradicts the

continuity of F and T . Therefore we must have β∗ = β. 2

From the lemma above, the limit of F (T n(x)) is β for all x ∈ ∆N+. Since

F is continuous and F−1(β) = U , every forward T -orbit starting in ∆N+ must

converge to U . From equation (11), we see that if holdings are close to zero

for agents j = k + 1, . . . , N , then we have, approximately,

s′j =
βj
β1

sj, (A.8)
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which gives us, asymptotically, an exponential rate of convergence to zero all

j > k. This completes the proof of Theorem 1. 2
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Fig. 1. The demand functions of two agents, β1 = 0.95, β2 = 0.7. Iteration of the
upper function is shown with the arrows; holdings converge to s1 = 2. Likewise,
holdings for the other agent converge to zero.
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