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Abstract. We present a method to apply the Malliavin calculus to calculate sensitivities for
exponential Levy models built from the Variance Gamma and Normal Inverse Gaussian processes.
We also present new sensitivities for these processes. The calculation of the sensitivities is based on
a finite dimensional Malliavin calculus and we compare the results with finite difference calculations.
This is done using Monte Carlo methods. For European call and digital options we compare the sim-
ulation results with exact calculation of sensitivities using Fourier transform methods. The Malliavin
method outperforms the finite difference method especially when payoff has serious discontinuities.
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1. Introduction. The sensitivity analysis of options are as important as the
pricing in option theory since they are used for hedging strategies, hence for risk
management purposes. In general, these sensitivities are restricted within the Black-
Scholes’ model parameter set and called as the Greeks . In this paper, we will introduce
new sensitivities for the options whose underlying is driven by exponential Lévy pro-
cesses, specifically Variance Gamma and Normal Inverse Gaussian processes. Then,
we will show that how Malliavin calculus can be used in order to calculate the Greeks
and new sensitivities that we introduce. We will give explicit formulas that can be
used in Monte Carlo simulations, directly.

The sensitivities are calculated by using the finite difference method if the pricing
has to be done by Monte-Carlo simulation. However, when the payoff function is not
smooth enough the finite difference method may perform poorly. Malliavin calculus
introduces an additional term, H1, in the expectation while removing the derivative
operator. To be precise let us consider the delta of a European call option, i.e.,

∂

∂S0
E[φ(ST )|F0] = E[φ(ST )H(ST ,

ST

S0
)|F0].

When φ is the payoff function of a digital option, Malliavin weight “smooths” the ex-
pectation. Hence, the expectation of the resulting expression is calculated efficiently
by Monte-Carlo simulation. We also use this approach when the derivative is taken
with respect to the parameters of NIG and VG distributions after introducing vari-
ations of Malliavin weight by using new localization methods together with the one
used in [12]. Our results show that Malliavin approach performs better in terms of
speed of convergence as we calculate the sensitivities of European call and digital
options written on S&P 500 index when the index is modelled by an exponential NIG
process, [3] as opposed to an exponential VG process, [16]. In order to get the risk
neutral parameters of the NIG and VG distributions we calibrated the option models
to the price of S&P 500 European put/call options’ market data. We used fast Fourier
transform method during the calibration process as discussed in [8]. A similar idea is
used for the sensitivity calculations of the options. At this point, a natural question
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arises. Why do we apply Malliavin calculus if we can calculate the sensitivities via fast
Fourier transform method? For most of the path dependent financial contracts such
as Asian options, look-back options, etc., a closed form solution through the charac-
teristic function may not exist. Hence, the Malliavin approach can be effectively used
in sensitivity calculation whether the payoff function is smooth or not, as it reduces
the number of path generation in the finite difference method.

We will now explain the history that has brought us to this point in our research.
Following the pioneering papers [12] and [13] the use of Malliavin calculus in sensitivity
calculations has been extended to the models with Lévy processes from the models
of lognormal type diffusion processes. In [6] following the results in [12], findings of
the optimal Malliavin weight in sensitivity calculations under the lognormal diffusion
models are presented. Results that are related to the finite dimensional Wiener space
are given in [15]. Lately, application of Malliavin calculus realized after the extensive
use of market models where the underlying is modelled by a jump diffusion or in
general by a Lévy process. Some of the important applications are discussed in [10],
[23] and [21], [4]. In [19], a generalized approach for Lévy processes is introduced
by using the fact that Lévy processes can be decomposed into Wiener process and
a Poisson random measure part. However, this assumption fails for the Variance
Gamma (VG) and Normal Inverse Gaussian (NIG) processes since their decomposition
only involves the Poisson random measure. In [5], we used the compound Poisson
approximation of VG process and gave closed form solutions for the deltas’ of call and
digital options by using Malliavin calculus in a finite dimensional space introduced
in [4]. This paper provides a method which is more efficient than the approximation
technique as we presented in [5]. Sensitivity calculations of options that are related
to the distributional parameters of the Lévy processes have not been considered in
the literature. In this paper, we will introduce new sensitivity parameters for an
exponential Lévy market model by considering effects of the distributional parameters
of VG and NIG processes.

The paper is organized as follows. We introduce, in Section 2, the related proper-
ties of VG and NIG processes and present the formulas for sensitivities of European
call and digital options, that are obtained by using the inverse Fouriér transform.
Also, we introduce the new sensitivities and their surface plots with respect to mon-
eyness and time to expiry of the options. In Section 3, the fundamentals of Malliavin
calculus for simple functionals in the frame of [4] are discussed. We generalize their
results in terms of the computation of the Malliavin weight. Then, in Section 4, we
give the detailed calculations of Malliavin weight for different sensitivities including
new ones that we introduce and the examples of Greeks such as delta, gamma, and
rho. We also formalize the weight so that it can be used in simulations directly. Sec-
tion 5 is devoted to new localization methods that we introduce together with the
variations of weights that are obtained in Section 4. In the last section we intro-
duce the option data that we use in our simulations and in the calibration of option
pricing models, and we present the results of the simulations in terms of figures that
show the comparison of the performance of the different approaches in calculation of
sensitivities via Monte-Carlo simulations.

2. Calculating the Greeks by Inverse Fourier Transform Method. In
this section we review the approach that is introduced in [8] for European style option
pricing by using Fourier transform method. We use this method to calculate the
sensitivities of European style call and digital options. Before we discuss the details
in the chapter we introduce the characteristic functions for different market models.
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Let Xt be a subordinated Brownian motion and St = S0e(r−q+w)t+Xt , t ≥ 0 be
the risk neutral price process of the underlying with w = − log(φXT

(−i)). Here
YT = log(ST ) = log(S0)+ (r− q+w)T +XT is the log-price of the underlying at time
T with the risk neutral density ρT (y).

If Xt is a Variance Gamma process, it can be written as the subordination of a
Brownian motion by Gamma process as follows:

Xt = θGt + σWGt
, (2.1)

where θ and σ are the drift and the volatility of the Brownian motion, respectively.
The parameter κ is the variance of the subordinator [8]. Using the same parametriza-
tion, its Lévy measure is given by

ν(dx) =
1

κ|x|
eAx−B|x|dx, (2.2)

where A = θ
σ2 and B =

√
θ2+σ2/κ

σ2 . Hence, the characteristic function of YT is

φV G
YT

(u) =
eiu[log(S0)+(r−q+w)T ]

(1− iuθκ+ σ2κu2

2 )T/κ
, (2.3)

where w =
1

κ
ln(1− θκ− σ2 κ

2
).

If Xt is an NIG process, it can be written as the subordination of a Brownian
motion by Inverse Gaussian process as follows:

Xt = βδ2IGt + δWIGt
, (2.4)

where α > 0, −α < β < α and δ > 0. The density of the Inverse Gaussian, IG(a, b),

law is given by f(x; a, b) =
a√
2π

exp(ab)x−3/2 exp(−
1

2
(a2x−1) + b2x)), x > 0. The

variance of the IG(a, b) distributed random variable is a/b3. In above parametrization,
a = 1 and b = δ

√

α2 − β2. Using the same parametrization, its Lévy measure is given
by

νNIG(dx) =
δα

π

exp(βx)K1(α|x|)
|x|

dx, (2.5)

where Kλ(x) is the modified Bessel function of the third kind with index λ, [2] and
the characteristic function of YT is given by

φNIG
YT

(u) = eiu[log(S0)+(r−q+w)T ]−δT (
√
α2−(β+iu)2−

√
α2−β2), (2.6)

where w = δ(
√

α2 − (β + 1)2−
√

α2 − β2). The (α, β, δ) parametrization of the Lévy
measure is commonly used in the literature,[3], [20], [22]. Thus, we will exercise all
of the calculations related to NIG with respect to this parametrization throughout
this paper. However, this parametrization does not lead to a Brownian subordination
in terms of the drift, volatility and variance of the subordinator as we have for VG
process. In [9] a similar parametrization of the NIG process is given. The Lévy
measure of the NIG process is given by

νNIG(dx) =
C

|x|
eAxK1(B|x|)dx, (2.7)
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where A = θ
σ2 , B =

√
θ2+σ2/κ

σ2 , C = θ2+σ2/κ
πσ

√
κ

andKλ(x) is the modified Bessel function

of the third kind with index λ. Therefore, using the same parametrization, an NIG
process Xt is given by the following subordination of a Brownian motion by Inverse
Gaussian process as follows:

Xt = θIGt + σWIGt
, (2.8)

where θ and σ are the drift and the volatility of the Brownian motion, respectively.
The parameter κ is the variance of the subordinator. Since the options’s prices are
invariant under these parametrizations i.e.,

C(α, β, δ) = C(θ(α, β, δ), σ(α, β, δ), κ(α, β, δ)) (2.9)

we write following relation between the derivatives of an option’s price with respect
to the paramters defining the Lévy measures given in (2.5) and (2.7).

∂C

∂α
=

∂C

∂θ

∂θ

∂α
+

∂C

∂σ

∂σ

α
+

∂C

∂κ

∂κ

∂α
∂C

∂β
=

∂C

∂θ

∂θ

∂β
+

∂C

∂σ

∂σ

∂β
+

∂C

∂κ

∂κ

∂β
∂C

∂δ
=

∂C

∂θ

∂θ

∂δ
+

∂C

∂σ

∂σ

∂δ
+

∂C

∂κ

∂κ

∂δ
. (2.10)

Also,
∣

∣

∣

∣

∣

∣

∂θ
∂α

∂σ
∂α

∂κ
∂α

∂θ
∂β

∂σ
∂β

∂κ
∂β

∂θ
∂δ

∂σ
∂δ

∂κ
∂δ

∣

∣

∣

∣

∣

∣

=
−α√

δ(α2 − β2)7/4
$= 0. (2.11)

This enables us to calculate the sensitivities in terms of the {θ, σ, κ} parametrization
in NIG case as well.

2.1. Sensitivities of Call and Digital Options. Let St be the price of the
underlying at time t. If YT = log(ST ) is the log-price of the underlying at time T
with the risk neutral density ρT (y), then the characteristic function, φYT

(u), of YT is
defined by the Fourier transform of the density function as follows:

φYT
(u) =

∫ ∞

−∞
eiuyρT (y)dy.

Thus, the price of a European call option is given by

CT (k) =
e−(αk+rT )

π

∫ ∞

0
e−iνk φYT

(ϑ(ν))

α2 + α− ν2 + i(2α+ 1)ν
dν, (2.12)

where ϑ(ν) = ν − (α + 1)i. In [8] the details of this result are discussed and since
then it has been used in the literature extensively. In (2.12), the parameter α is called
the dumping parameter, k is the log of the strike price, r is the constant interest rate
and T is the time to maturity. Following the same idea, we give price function of an
European digital option2 as follows:

DT (k) =
e−(αk+rT )

π

∫ ∞

0

e−iνk

α+ iν
φYT

(ν − αi)dν. (2.13)

2The pay-off function of the digital option is φ(ST ) = 1{ST >K}.
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2.1.1. Call Option Sensitivities: Delta, Gamma, Rho, Theta. Delta is
the sensitivity of the option’s price with respect to the initial value of the underlying
asset. It measures the change in option price with respect to a small change in S0.
Thus, it is calculated by taking the partial derivative of the option price with respect
to S0.

∆VG, NIG

Call (k) =
∂CT (k)

∂S0

=
e−(αk+rT )

S0π

∫ ∞

0
e−iνk

φVG, NIG

YT
(ϑ(ν))

α+ iν
dν. (2.14)

In Figures 2.1(a), 2.1(c) and 2.1(e) the surface plots of delta for BS, VG and NIG
models, respectively are given. It can be seen from these figures that for deep out of
the money options delta gets close to zero, while it approaches one for the deep in the
money options. The delta of the deep in the money and the deep out of the money
options, with the longer maturity, tend to approach zero and unity slower than the
ones with shorter maturity, respectively. In other words, a $1 change in the price of
the underlying increases the price of the in the money option that is close to maturity
more than the one that has more time to expiry.

Gamma is the sensitivity of the option’s delta with respect to the initial value of
the underlying asset. It measures the change in delta with respect to the small change
in S0.

ΓVG, NIG

Call
(k) =

∂∆Call

∂S0

=
e−(αk+rT )

S2
0π

∫ ∞

0
e−iνkφVG, NIG

YT
(ϑ(ν))dν. (2.15)

It is important for the hedging strategies that are used when the options are traded.
Together with delta, gamma is commonly used for so called delta-gamma hedging, [7].
Figures 2.1(b), 2.1(d) and 2.1(f) shows how gamma changes with time and moneyness.
Gamma has its peak for the at the money options. As moneyness of the option deviates
from ATM, gamma becomes smaller. For deep in the money and the deep out of the
money options gamma is larger for those with more time to expiry. This is reasonable
since as the option has more time to expiry the delta of the option has more time to
vary.

Rho is the sensitivity of the option with respect to the interest rate, r. It measures
how much the option’s price changes with the small changes in the interest rate.

ρVG, NIG

Call (k) =
∂CT (k)

∂r

=
Te−(αk+rT )

π

∫ ∞

0

e−iνk

α+ 1 + νi
φVG, NIG

YT
(ϑ(ν))dν. (2.16)

It tends to approach to zero faster as the option becomes out of the money and
increases with time to maturity as it is seen in Figures 2.2(a), 2.2(c) and 2.2(e).

Theta is the sensitivity of the option with respect to time to maturity, T . Except
for deep in the money options, Θ is negative for all models. The reason for that is the
positive dividend as it is seen in Figures 2.2(b), 2.2(d) and 2.2(f). As long as q > 0,
Θ gets positive values as strike price approaches zero. Also, theta becomes smaller
in absolute value as the option has more time to expiry until it becomes positive.
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Theta is obtained by taking the partial derivative of the option price with respect to
T . Hence,

ΘVG

Call(k) =
∂CT (k)

∂T

=
e−(αk+rT )

π

∫ ∞

0
e−iνk

{

(α+ iν)r + (α+ 1 + iν)(w − q)

(α2 + α− ν2 + i(2α+ 1)ν)

−
1
κ log (1− (α+ 1 + iν)θκ− σ2

2 κ(α+ 1 + iν)2)

(α2 + α− ν2 + i(2α+ 1)ν)

}

φVG

YT
(ϑ(ν))dν

(2.17)

and under NIG model

ΘNIG

Call
(k) =

e−(αk+rT )

π

∫ ∞

0
e−iνk

{

(α+ iν)r + (α + 1 + iν)(w − q)

α2 + α− ν2 + i(2α+ 1)ν

−
δ
(√

α2
nig − (β + α+ 1 + iν)2 −

√

α2
nig − β2

)

α2 + α− ν2 + i(2α+ 1)ν







φNIG

YT
(ϑ(ν))dν.

(2.18)

2.1.2. Call Option Sensitivities: Drift, Vega1, Vega2. Before we introduce
these sensitivities we give the partial derivatives of the call option with respect to the
parameters {α, β, δ} when the underlying is modelled by an exponential NIG process.

∂CT (k)

∂β
=

Te−(αk+rT )

π

∫ ∞

0
e−iνk (α+ 1 + iν)Ũ(−i)− Ũ(ϑ(ν))

α2 + α− ν2 + i(2α+ 1)ν
φNIG

YT
(ϑ(ν))dν,

(2.19)

where Ũ(y) = δ

(

−(β+iy)√
α2

nig−(β+iy)2
− −β√

α2
nig−β2

)

.

∂CT (k)

∂δ
=

Te−(αk+rT )

π

∫ ∞

0
e−iνk (α+ 1 + iν)U(−i)− U(ϑ(ν))

α2 + α− ν2 + i(2α+ 1)ν
φNIG

YT
(ϑ(ν))dν,

(2.20)

where U(y) =
√

α2
nig − (β + iy)2 −

√

α2
nig − β2.

∂CT (k)

∂αnig
=

Te−(αk+rT )

π

∫ ∞

0
e−iνk (α+ 1 + iν)Û(−i)− Û(ϑ(ν))

α2 + α− ν2 + i(2α+ 1)ν
φNIG

YT
(ϑ(ν))dν,

(2.21)

where Û(y) = δαnig

(

1√
α2

nig−(β+iy)2
− 1√

α2
nig−β2

)

.

Drift is a new sensitivity that we introduce as the sensitivity of the option with
respect to the parameter θ of the Variance Gamma and Normal Inverse Gaussian
processes.

DVG

Call(k) =
∂CT (k)

∂θ

=
−Te−(αk+rT )

π

∫ ∞

0
e−iνk U(−i)− U(ϑ(ν))

α+ iν
φVG

YT
(ϑ(ν))dν,

(2.22)
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where U(y) = 1/(1 − iyθκ + σ2

2 κy2). DNIG

Call(k) is given by the solution of the linear
system given in (2.10). For the counter parties of an option trade, the effect of the
skewness of the underlying asset in the option price is important. When θ is zero the
distributions of VG and NIG processes are symmetric. Thus, as θ deviates from zero
the skewness of the distribution of the underlying asset changes. This is an important
fact for the option pricing. For instance, positive skewness implies higher values of the
underlying. Hence, the call option is going to be more expensive. In Figures 2.3(a)
and 2.3(b), we observe that drift tends to decrease as maturity increases. Thus,
for a positive change in θ, the value of the option decreases. We obtained negative
values after we calibrated VG and NIG models on date August 06, 2008. Thus, since
θ is negative, the positive change in the absolute value of theta will result in more
negatively skewed distribution. Hence, it is more likely that the value of the underlying
becomes less than the strike price and this causes a decline in the price of the option.
Despite this general view, in Figure 2.3(b) for very short term options we observe that
the drift has positive value for the near the money options with K/S0 > 1. When
θ is positive both figures get positive values. However, drift in NIG model becomes
negative for very short term options that are near the money with K/S0 < 1.

Vega is another new sensitivity that we introduce as the sensitivity of the option
with respect to the parameter σ of the VG and NIG processes. It measures the change
in the option’s price with respect to the small changes in σ. When we compare the
Figures 2.3(c), 2.3(d) and 2.4 we see that vegas of the NIG and BS models are close
to each other. Vega of the VG model, however, has much smaller values.

VVG

Call
(k) =

∂CT (k)

∂σ

=
−σTe−(αk+rT )

π

∫ ∞

0
e−iνk

{

U(−i)− (α+ 1 + iν)U(ϑ(ν))
α+ iν

}

φVG

YT
(ϑ(ν))dν

(2.23)

Even though we use the Black-Scholes name for this sensitivity it is slightly different.
In the Black-Scholes model σ is the only source of the volatility. However, in the VG
and NIG processes, σ is a partial source of the total volatility. The other source of
the volatility is κ. Thus, we define another sensitivity of the option with respect to
the parameter κ of the VG and NIG processes.

Vega2 measures the change in the option’s price with the small changes in the
parameter κ, the variance of the subordinator.

V2
VG

Call(k) =
∂CT (k)

∂κ

=
Te−(αk+rT )

π

∫ ∞

0
e−iνk

{

(α+ 1 + iν)G(−i)− G(ϑ(ν))
(α+ iν)(α + 1 + iν)

}

φVG

YT
(ϑ(ν))dν,

(2.24)

where G(y) = (−iθy+σ2y2

2 )κ−Ũ(y) log (Ũ(y))

κ2Ũ(y)
with Ũ(y) =

1

U(y)
. V2

NIG

Call(k) is given by the

solution of the linear system given in (2.10). In Figures 2.3(e), 2.3(f), Vega2 gets
smaller for out of the money and in the money options and it increases with the
time to expiry. However, Vega2 of NIG model takes negative values that increase in
absolute value as near and at the money options get close to expiry. This implies that
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as the variance of time increases in the arrival of the new information the option price
decreases as it gets close to expiry.

2.1.3. Digital Option Sensitivities. We calculate the sensitivities of a digital
option by taking the partial derivatives of the price function given in Equation (2.13)
with respect to the related parameter.

∆VG, NIG

Digital
(k) =

∂DT (k)

∂S0

=
e−(αk+rT )

S0π

∫ ∞

0
e−iνkφVG, NIG

YT
(ν − αi)dν. (2.25)

ΓVG, NIG

Digital
(k) =

∂∆Digital

∂S0

=
e−(αk+rT )

S2
0π

∫ ∞

0
e−iνk(α+ iν − 1)φVG, NIG

YT
(ν − αi)dν. (2.26)

ρVG, NIG

Digital
(k) =

∂DT (k)

∂r

=
e−(αk+rT )

π

∫ ∞

0
e−iνkT

(α+ iν − 1)φVG, NIG

YT
(ν − αi)

α+ iν
dν. (2.27)

ΘVG

Digital
(k) =

∂DT (k)

∂T

=
e−(αk+rT )

π

∫ ∞

0
e−iνk

{

(α+ iν − 1)r + (α+ iν)w

α+ iν

−
1
κ log (1 − (α+ iν)θκ− σ2

2 κ(α+ iν)2)

α+ iν

}

φVG

YT
(ν − αi)dν. (2.28)

ΘNIG

Digital
(k) =

∂DT (k)

∂T

=
e−(αk+rT )

π

∫ ∞

0
e−iνk

{

(α+ iν − 1)r + (α+ iν)w

α+ iν

−
δ
(√

α2
nig − (β + α+ iν)2 −

√

α2
nig − β2

)

α+ iν







φNIG

YT
(ν − αi)dν.(2.29)

DVG

Digital(k) =
∂DT (k)

∂θ

=
−Te−(αk+rT )

π

∫ ∞

0
e−iνk (U(−i)− U(ν − αi))φVG

YT
(ν − αi)dν.(2.30)

where U(y) = 1/(1− iyθκ+ σ2

2 κy2).
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VVG

Digital(k) =
∂DT (k)

∂σ
(2.31)

=
−σTe−(αk+rT )

π

∫ ∞

0
e−iνk(U(−i)− (α+ iν)U(ν − αi))φVG

YT
(ν − αi)dν.

V2
VG

Digital
(k) =

∂DT (k)

∂κ
(2.32)

=
Te−(αk+rT )

π

∫ ∞

0
e−iνk

{

(α+ iν)G(−i)− G(ν − αi)

(α+ iν)

}

φVG

YT
(ν − αi)dν,

where G(y) = (−iθy+σ2y2

2 )κ−Ũ(y) log (Ũ(y))

κ2Ũ(y)
with Ũ(y) =

1

U(y)
.

∂DT (k)

∂β
=

Te−(αk+rT )

π

∫ ∞

0
e−iνk (α+ iν)Ũ(−i)− Ũ(ν − αi)

α+ iν
φNIG

YT
(ν − αi)dν,(2.33)

where Ũ(y) = δ

(

−(β+iy)√
α2

nig−(β+iy)2
− −β√

α2
nig−β2

)

.

∂DT (k)

∂δ
=

Te−(αk+rT )

π

∫ ∞

0
e−iνk (α+ iν)U(−i)− U(ν − αi)

α+ iν
φNIG

YT
(ν − αi)dν,(2.34)

where U(y) =
√

α2
nig − (β + iy)2 −

√

α2
nig − β2.

∂DT (k)

∂αnig
=

Te−(αk+rT )

π

∫ ∞

0
e−iνk (α+ iν)Û(−i)− Û(ν − αi)

α+ iν
φNIG

YT
(ν − αi)dν,(2.35)

where Û(y) = δαnig

(

1√
α2

nig−(β+iy)2
− 1√

α2
nig−β2

)

.

3. Malliavin Calculus for Simple Functionals. In this section we will give
the definitions and theorems of finite dimensional Malliavin calculus. The notations
that we use follow from [4]. However, we generalize definitions and theorems for k
such that 1 ≤ k ≤ n and for k = n we obtain the results of [4]. Consider a sequence of
independent random variables (Vn, n ∈ N+) on a probability space (Ω,F , P ) such that
for all n ≥ 1, Vn has moments of any order. We assume that Vn is absolutely contin-
uous with respect to the Lebesgue measure and has density ρn which is continuously
differentiable on R and such that ∀m ∈ N, lim

y→±∞
|y|mρn(y) = 0. We also assume

that
∂yρn(y)

ρn(y)
has at most polynomial growth. For m ≥ 1, we denote by f ∈ Cm

↑ (Rn)

the space of the functions f : Rn → R which are m times differentiable and such that
f and its derivatives up to order m have at most polynomial growth.

A random variable F is called a simple functional if there exists some n ∈ N and
some measurable function f : Rn → R such that

F = f(V1, . . . , Vn).
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We denote by S(n,m) the space of the simple functionals such that f ∈ Cm
↑ (Rn). A

simple process of length k is a sequence of random variables U = (Ui)i≤k, k ≤ n such
that

Ui = ui(V1, . . . , Vn).

We will also denote by P k
n,m the space of k-length simple processes.

Definition 3.1 (Inner Product). Let U = (Ui)i≤k and Ũ = (Ũj)j≤k be two
k-length simple processes in P k

(n,1) then

〈U, Ũ〉 =
k
∑

p=1

Up Ũp

is called the inner product of U and Ũ .
Definition 3.2 (Malliavin Derivative). The k-length simple process

Dk : S(n,1) → P k
(n,0), k ≤ n is called the Malliavin derivative operator and it is defined

by DkF = (DiF )i≤k, where F = f(V1, . . . , Vn) ∈ S(n,1) and Dk
i F = ∂if(V1, . . . , Vn),

i ≤ k.
Definition 3.3 (Skorohod Integral). δk : P k

(n,0) → S(n,1), k ≤ n is called the

Skorohod integral operator and is defined for any k-length simple process U ∈ P k
(n,0)

such that

δk(U) = −
k
∑

i=1

[DiUi + θi(Vi)Ui],

where

θi(y) = ∂y ln[ρi(y)] =

{

ρ′i(y)
ρi(y)

, if ρi(y)〉0
0, if ρi(y) = 0

Proposition 3.4 (Duality Formula). Let F ∈ S(n,1) and U ∈ P k
(n,0), then

E[〈DkF,U〉] = E[Fδk(U)].

Proof.

E[〈DkF,U〉] = E[
k
∑

i=1

DiF Ui]

= E[
k
∑

i=1

(ui∂if)(V1, . . . , Vn)]

=

∫

Rn

[

k
∑

i=1

(ui∂if)(y1, . . . , yn)

]

ρ1(y1) . . . ρn(yn)dy1 . . . dyn

Now, we apply the regular integration by parts formula of Calculus for each i.
Let

αi = ui(y1, . . . , yn)ρi(yi) dβi = ∂if(y1, . . . , yn)dyi

dαi =
[

∂iui(y1, . . . , yn) + ui(y1, . . . , yn)
ρ′i(yi)
ρi(yi)

]

ρi(yi)dyi βi = f(y1, . . . , yn)
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and we continue from above,

=
k
∑

i=1

∫

Rn−1

[f(y1, . . . , yn)ui(y1, . . . , yn)ρi(yi)|R]
n
∏

j=1,j '=i

ρj(yj)dyj

−
∫

Rn

f(y1, . . . , yn)
k
∑

i=1

[

∂iui(y1, . . . , yn) + ui(y1, . . . , yn)
ρ′i(yi)

ρi(yi)

] n
∏

j=1

ρj(yj)dyj

=

∫

Rn

f(y1, . . . , yn)δ
k(U(y1, . . . , yn))

n
∏

j=1

ρj(yj)dyj

= E[Fδk(U)].

Definition 3.5 (Ornstein-Uhlenbeck Operator). Lk : S(n,2) → S(n,0) is called
the Ornstein-Uhlenbeck operator and is defined by

LkF = −
k
∑

i=1

LiF = −
k
∑

i=1

DiDiF + θiDiF

= −
k
∑

i=1

(∂2
iif)(V1, . . . , Vn) + θi(Vi)(∂if)(V1, . . . , Vn)

Remark 3.1.

i. Orntein-Uhlenbeck operator can be considered as the Skorohod integral opera-
tor applied to Malliavin derivative operator.

ii. E[F LkG] = E[GLkF ]
Proof. E[F LkG] = E[F δk(DkG)] = E[〈DkF,DKG〉] = E[δk(DkF )G] =
E[GLkF ], where we used the duality formula in the third equality.

iii. Lk(F G) = FLk(G) +GLk(F )− 2〈DkF,DkG〉
Proof. We use the definition of Ornstein-Uhlenbeck operator.

Lk(F G) = −
k
∑

i=1

Li(F G) = −
k
∑

i=1

DiDi(F G) + θi(Vi)Di(F G)

= −
k
∑

i=1

{Di[F DiG+GDiF ] + θi(Vi)[F DiG+GDiF ]}

= −
k
∑

i=1

{DiFDiG+ FDiDiG+DiGDiF +GDiDiF+

+ θi(Vi)F DiG+ θi(Vi)GDiF}

= −
k
∑

i=1

{F (DiDiG+ θi(Vi)DiG) +G(DiDiF

+ θi(Vi)DiF ) + 2DiFDiG}
= FLk(G) +GLk(F )− 2〈DkF,DkG〉

Definition 3.6 (Malliavin Covariance Matrix). Let F = (F1, F2, . . . , Fd) be an
d-dimensional vector of simple functionals such that Fi ∈ S(n,1). The matrix Mk

σ (F )
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is called the Malliavin covariance matrix of F whose entries are given by

Mk
σ (F )ij = 〈DFi, DFj〉 =

k
∑

l=1

∂lfi∂lfj(V1, . . . , Vn),

where Fi = fi(V1, . . . , Vn).
Theorem 3.7 (Integration by Parts). Let F = (F1, F2, . . . , Fd) ∈ Sd

(n,2) and G ∈
S(n,1). We assume that the Mk

σ (F ) is invertible and denote Mk
γ (F ) =

[

Mk
σ (F )
]−1

.

We also assume that E[detMk
γ (F )]4 < ∞. Then for every smooth function φ : Rd → R

E[∂iφ(F )G] = E[φ(F )Hk
i (F,G)], (3.1)

where

Hk
i (F,G) =

d
∑

i=1

GMk
γji(F )LkF −Mk

γji(F )〈DkF,DkG〉−G〈DkF,DkMk
γji(F )〉 (3.2)

with E[Hi(F,G)] < ∞. Proof. Using the chain rule we write

〈Dkφ(F ), DkFj〉 =
k
∑

p=1

Dpφ(F )DpFj

=
k
∑

p=1

d
∑

i=1

∂iφ(F )DpFi DpFj

=
d
∑

i=1

∂iφ(F )
k
∑

p=1

DpFiDpFj

=
d
∑

i=1

∂iφ(F )Mk
σij (F )

Thus, we obtain ∂iφ(F ) =
d
∑

j=1

〈Dkφ(F ), DkFj〉Mk
γji (F ). By Remark 1.6.(iii) we have,

〈Dkφ(F ), DkFj〉 =
1

2

[

−Lk(φ(F )Fj) + φ(F )LkFj + FjL
k(φ(F ))

]

.

Therefore,

E[∂iφ(F )G] =
1

2
E









d
∑

j=1

[

−Lk(φ(F )Fj) + φ(F )LkFj + FjL
k(φ(F ))

]

Mk
γji(F )



 G





When we apply Remark 1.6(ii) to the first and third terms in the summation by
considering G and Mk

γ (F )ji in the multiplication, on the right hand side we get

=
1

2
E





d
∑

j=1

[

−φ(F )FjL
k(GMk

γji(F )) + φ(F )GMk
γji (F )LkFj + φ(F )Lk(FjM

k
γji(F )G)

]



 .
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Again, by applying Remark 1.6.(iii) to the last term in the above sum, we obtain

=
1

2
E





d
∑

j=1

φ(F )
[

GMk
γji(F )LkFj − FjL

k(GMk
γji(F )) + FjL

k(Mk
γji(F )G)

+ Mk
γji(F )GLk(Fj)− 2〈DkFj , D

k(Mk
γji(F )G)〉

]]

=
1

2
E



φ(F )
d
∑

j=1

[

2GMk
γji(F )LkFj − 2〈DkFj , D

k(Mk
γji(F )G)〉

]





By applying Remark 1.6(iv) to the last term of the above sum we conclude as

= E



φ(F )
d
∑

j=1

GMk
γji(F )LkFj −Mk

γji(F )〈DkFj , D
k(G)〉 −G〈DkFj , D

k(Mk
γji(F ))〉



 .

4. Applications of Malliavin Calculus. Throughout this section we will use
a discretization scheme of the process. As a result, we use the following time grid

0 = t0 ≤ t1 ≤ . . . ≤ tn−1 ≤ tn = T.

Therefore, the continuous underlying process takes the following structure

ST = S0e
(r−q+w)T+

∑n
i=1 A

√
Sti

−Sti−1
Zi+B

∑n
i=1 Sti

−Sti−1 , (4.1)

where St is the subordinating process. Since, digital and call options’ payoff functions
depend on the final value of the underlying, the Malliavin weights for them are the
same. In the next sections we use the integration by parts formula that we obtain in
Theorem (3.7). Thus, the Malliavin weight for 1-dimension (d = 1) is

Hk(F,G) = GMk
γ (F )LkF−Mk

γ (F ) < DkF,DkG > −G < DkF,DkMk
γ (F ) >, (4.2)

for 1 ≤ k ≤ n.
The arbitrage free option price is given by u(x) = e−rT = e−rTE[φ(ST )] with

respect to the sensitivity parameter x. In the next sections we give the details of the
calculations of the Malliavin weights for the Greeks when x = S0, x = r or x = σ,
etc. Also, in the following subsections,

F = f(x1, . . . , xn, y1, . . . , yn) = S0 exp

(

(r − q + w)T +
n
∑

i=1

A
√
yixi +B

n
∑

i=1

yi

)

,

and Gx = ∂ST

∂x .

4.1. VG Model. In VG model ST is given by

ST = S0e
(r−q+w)T+

∑n
i=1 σ

√
∆GiZi+θ

∑n
i=1 ∆Gi , (4.3)

where Gt is the gamma process used to subordinate the Wiener process and ∆Gi =
Gti −Gti−1 . Also, we define the following random set RS = {(x1, . . . , xn, y1, . . . , yn) :
(x1, . . . , xn, y1, . . . , yn) = (Z1, . . . , Zn,∆G1, . . . ,∆Gn)}.
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4.1.1. Greeks: ∆.

∆ = e−rT ∂

∂S0
E[φ(ST )] = e−rTE[φ′(ST )

ST

S0
] = E[φ(ST )H

k
∆(ST ,

ST

S0
)].

In the following list the detailed calculations of the terms in Equation (4.2) are given.
1. ST = F = f(Z1, . . . , Zn,∆G1, . . . ,∆Gn).
2. DjF = ∂f

∂xj
|RS = σ

√

∆GjST , ∀j such that 1 ≤ j ≤ k.

3. DjjF = ∂2f
∂x2

j
|RS = σ2∆GjST , ∀j such that 1 ≤ j ≤ k.

4. GS0 = ∂ST

∂S0
= ∂f
∂S0

|RS = ST

S0
.

5. DjGS0 = σ
√

∆Gj
ST

S0
, ∀j such that 1 ≤ j ≤ k.

6. Θj(xj) =
d log (pj(xj))

dxj
= −xj , where pj(xj) =

1√
2π

e−
x2
j
2 , ∀j such that 1 ≤ j ≤

k.
7. LjF = DjjF + Θj(Zj)DjF = σ2∆GjST − Zjσ

√

∆GjST , ∀j such that 1 ≤
j ≤ k.

8. Lk = −
k
∑

i=1

DjjF +Θj(Zj)DjF = −ST

k
∑

i=1

σ2∆Gj −Zjσ
√

∆Gj , for 1 ≤ k ≤

n.

9. Mk
σ (F ) =

k
∑

i=1

σ2∆GiS
2
T > 0, for 1 ≤ k ≤ n.

10. DjM
k
σ (F ) = σ

√

∆GjST 2ST

k
∑

i=1

σ2∆Gi = 2σ
√

∆Gj

k
∑

i=1

σ2∆GiS
2
T

= 2σ
√

∆GjMk
σ (F ), ∀j such that 1 ≤ j ≤ k.

11. Mk
γ (F ) =

1

Mk
σ (F )

, for 1 ≤ k ≤ n.

12. DjM
k
γ (F ) = −

DjMk
σ (F )

(Mk
σ (F ))2

= −
2σ
√

∆GjMk
σ (F )

(Mk
σ (F ))2

= −
2σ
√

∆Gj

Mk
σ (F )

Malliavin weight follows from the above calculations:

Hk
∆(F,GS0 ) =

ST

S0
Mk
γ (F )

(

−ST

k
∑

i=1

(

σ2∆Gj − Zjσ
√

∆Gj

)

)

− Mk
γ (F )

k
∑

j=1

σ
√

∆GjSTσ
√

∆Gj
ST

S0
−

ST

S0

k
∑

j=1

σ
√

∆GjST
(−2σ
√

∆Gj)

Mk
σ (F )

=
−1

S0
Mk
γ (F )





k
∑

i=1

σ2∆GjS
2
T − S2

T

k
∑

j=1

Zjσ
√

∆Gj





−
1

S0
Mk
γ (F )

k
∑

j=1

σ2∆GjS
2
T +

2

S0
Mk
γ (F )

k
∑

j=1

σ2∆GjS
2
T

=
−1

S0
Mk
γ (F )



Mk
σ (F )− S2

T

k
∑

j=1

Zjσ
√

∆Gj





−
1

S0
Mk
γ (F )Mk

σ (F ) +
2

S0
Mk
γ (F )Mk

σ (F )
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=
−1

S0
+

Mk
γ (F )

S0
S2
T

k
∑

j=1

Zjσ
√

∆Gj −
1

S0
+

2

S0

=
Mk
γ (F )

S0
S2
T

k
∑

j=1

Zjσ
√

∆Gj

=
S2
T

∑k
j=1 Zjσ

√

∆Gj

S0
∑k

i=1 σ
2∆GiS2

T

=

∑k
j=1 Zj

√

∆Gj

S0
∑k

i=1 σ∆Gi

. (4.4)

Therefore, delta of a call or digital option is written via the Malliavin weight as

∆ = e−rTE[φ(ST )

∑k
j=1 Zj

√

∆Gj

S0
∑k

i=1 σ∆Gi

]. (4.5)

4.1.2. Greeks: Γ. We express the weight for gamma in terms of the weight of
delta.

Γ = e−rT ∂2

∂S2
0

E[φ(ST )] = e−rT ∂

∂S0
E[φ′(ST )

ST

S0
] = e−rT ∂

∂S0
E[φ(ST )H

k
∆(ST ,

ST

S0
)]

= e−rTE[φ′(ST )
ST

S0
Hk

∆(ST ,
ST

S0
)] + E[φ(ST )

∂

∂S0
Hk

∆(ST ,
ST

S0
)] (4.6)

= e−rTE[φ(ST )H
k(ST ,

ST

S0
Hk

∆(ST ,
ST

S0
))] + e−rTE[φ(ST )

∂

∂S0
Hk

∆(ST ,
ST

S0
)] (4.7)

After taking the derivative in the last term, gamma is given as follows.

Γ = e−rTE[φ(ST )H
k(ST ,

ST

S0
Hk

∆(ST ,
ST

S0
))]− e−rTE[φ(ST )

1

S0
Hk

∆(ST ,
ST

S0
)]

= e−rTE[φ(ST )

(

Hk(ST ,
ST

S0
Hk

∆(ST ,
ST

S0
))−

1

S0
Hk

∆(ST ,
ST

S0
)

)

]. (4.8)

We use the integration by parts formula in order to remove the derivative in the first
term of Equation (4.6). Since F = ST , we use the F -related calculations that are
done for delta. Thus, we deal with a shorter list of calculations for gamma. In the
following list the detailed calculations of the terms in Equation (4.2) are given.

1. GΓ = ST

S0
Hk

∆(F,GS0 ).

2. DjGΓ =
σ
√

∆GjST

S0
Hk

∆(F,GS0 ) +
ST

S2
0

√
∆Gj

∑
k
i=1 σ∆Gi

, ∀j such that 1 ≤ j ≤ k.

3.

GΓM
k
γ (F )LkF

=
ST

S0
Hk

∆(F,GS0)M
k
γ (F )



−ST

k
∑

j=1

(

σ2∆Gj − Zjσ
√

∆Gj

)





= Hk
∆(F,GS0)



−Mk
γ (F )

k
∑

j=1

S2
T

S0
σ2∆Gj +

∑k
j=1

S2
T

S0
Zjσ
√

∆Gj
∑k

i=1 σ
2∆GiS2

T




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= Hk
∆(F,GS0)



−Mk
γ (F )Mk

σ (F ) +

∑k
j=1

S2
T

S0
Zjσ
√

∆Gj
∑k

i=1 σ
2∆GiS2

T





= Hk
∆(F,GS0)

(

−
1

S0
+Hk

∆(F,GS0 )

)

(4.9)

Recall that Mk
γ (F )Mk

σ (F ) = 1.
4.

Mk
γ (F )〈DF,DGΓ〉k

= Mk
γ (F )

k
∑

j=1

σ
√

∆GjST

[

σ
√

∆GjST

S0
Hk

∆(F,GS0 ) +
ST

S2
0

√

∆Gj
∑k

i=1 σ∆Gi

]

=
Hk

∆(F,GS0 )M
k
γ (F )

S0

k
∑

j=1

σ2∆GjS
2
T +

Mk
γ (F )S2

T

S2
0

∑k
j=1 σ∆Gj
∑k

i=1 σ∆Gi

=
Hk

∆(F,GS0 )M
k
γ (F )

S0
Mk
σ (F ) +

Mk
γ (F )S2

T

S2
0

∑k
j=1 σ∆Gj
∑k

i=1 σ∆Gi

=
Hk

∆(F,GS0 )

S0
+

Mk
γ (F )S2

T

S2
0

. (4.10)

5.

GΓ〈DF,DMk
γ (F )〉k

= −
ST

S0
Hk

∆(F,GS0 )
k
∑

j=1

σ
√

∆GjST
2σ
√

∆Gj

Mk
σ (F )

= −
2

S0
Hk

∆(F,GS0 )
k
∑

j=1

σ2∆GjS
2
TM

k
γ (F )

= −
2

S0
Hk

∆(F,GS0 )M
k
σ (F )Mk

γ (F )

= −
2

S0
Hk

∆(F,GS0 ). (4.11)

Thus,

Hk(F,GΓ) = (4.9)− (4.10)− (4.11)

= Hk
∆(F,GS0)

(

−
1

S0
+Hk

∆(F,GS0 )

)

−
Hk

∆(F,GS0 )

S0
−

Mk
γ (F )S2

T

S2
0

+
2

S0
Hk

∆(F,GS0)

= (Hk
∆(F,GS0 ))

2 −
Mk
γ (F )S2

T

S2
0

. (4.12)

This implies

Hk
Γ(F,GΓ) = (Hk

∆(F,GS0))
2 −

Mk
γ (F )S2

T

S2
0

−
1

S0
Hk

∆(ST ,
ST

S0
). (4.13)
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Therefore,

Γ = e−rTE[φ(ST )

(

(Hk
∆(ST ,

ST

S0
))2 −

Mk
γ (F )S2

T

S2
0

−
1

S0
Hk

∆(ST ,
ST

S0
)

)

]. (4.14)

4.1.3. Greeks: ρ. We express the weight for rho in terms of the weight of delta.

ρ =
∂

∂r

(

e−rTE[φ(ST )]
)

= −Te−rTE[φ(ST )] + e−rTE[φ′(ST )
∂ST

∂r
]. (4.15)

We define Gρ =
∂ST

∂r
= TST = TS0

ST

S0
= TS0G∆. Thus, we rewrite ρ in terms of

G∆ as

ρ = −Te−rTE[φ(ST )] + e−rTE[φ′(ST )TS0G∆]

= −Te−rTE[φ(ST )] + TS0e
−rTE[φ(ST )H

k
∆(F,G∆)]

= e−rTE[φ(ST )T (S0H
k(F,G∆)− 1)] (4.16)

Equation (4.16) implies that

Hk
ρ (ST , H

k(F,G∆)) = T (S0H
k(F,G∆)− 1), (4.17)

where F = ST .

4.1.4. Greeks: D. We express the weight for drift in terms of the weight of
delta.

D =
∂

∂θ

(

e−rTE[φ(ST )]
)

= e−rTE[φ′(ST )
∂ST

∂θ
]. (4.18)

Recall that w =
1

κ
ln(1−θκ−σ2κ

2
). We defineGD =

∂ST

∂θ
=

(

∂w

∂θ
T +

n
∑

i=1

∆Gi

)

ST =

S0

(

∂w

∂θ
T +

n
∑

i=1

∆Gi

)

∂ST

∂S0
= S0

(

∂w

∂θ
T +

n
∑

i=1

∆Gi

)

G∆.

Lemma 4.1. Let A be any random variable independent from Zi for all i =
1, . . . , k. Then Hk(F,AG) = AHk(F,G) for all i = 1, . . . , k.

Proof. Equation (4.2) implies that

Hk(F,AG) = AGMk
γ (F )LkF

−Mk
γ (F ) < DkF,Dk(AG) > −AG < DkF,DkMk

γ (F ) > .

Since A is independent of Zi for all i = 1, . . . , k, we write Mk
γ (F ) < DkF,ADkG >

for the second term in the above equation. Also,

Mk
γ (F ) < DkF,ADkG >= Mk

γ (F )A < DkF,DkG >

by the linearity of the inner product. This completes the proof.
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We observe that S0

(

∂w
∂θ T +

∑n
i=1∆Gi

)

is independent of Zi’s. Thus, Lemma
(4.1) implies that

D = e−rTE[φ′(ST )S0

(

∂w

∂θ
T +

n
∑

i=1

∆Gi

)

G∆]

= e−rTE[φ(ST )H
k
∆(ST , S0

(

∂w

∂θ
T +

n
∑

i=1

∆Gi

)

G∆)]

= e−rTE[φ(ST )S0

(

∂w

∂θ
T +

n
∑

i=1

∆Gi

)

Hk
∆(ST , G∆)]

Therefore,

D = e−rTE[φ(ST )S0

(

−T

1− θκ− σ2 κ
2

+
n
∑

i=1

∆Gi

)

Hk
∆(ST , G∆)], (4.19)

since
∂w

∂θ
=

−1

1− θκ− σ2 κ
2

. Equation (4.19) implies

Hk
D(ST , G∆) = S0

(

−T

1− θκ− σ2 κ
2

+
n
∑

i=1

∆Gi

)

Hk
∆(ST , G∆). (4.20)

4.1.5. Greeks: V. We express the weight for vega in terms of the weight of
delta.

V =
∂

∂σ

(

e−rTE[φ(ST )]
)

= e−rTE[φ′(ST )
∂ST

∂σ
]. (4.21)

In the following list the detailed calculations of the terms in Equation (4.2) are given.

1. Gσ =
∂ST

∂σ
=

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)

ST . For the further calculationsDjGσ

is needed explicitly.

2. DjGσ =
√

∆GjST +

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)

σ
√

∆GjST .

3.

GσM
k
γ (F )LkF

=

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)

STM
k
γ (F )



−ST

k
∑

j=1

(

σ2∆Gj − Zjσ
√

∆Gj

)





=

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)



−1 +Mk
γ (F )S2

T

k
∑

j=1

Zjσ
√

∆Gj





= −S0

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)(

1

S0
−
∑k

j=1 Zjσ
√

∆Gj

S0
∑k

j=1 σ
2∆Gj

)

= −S0

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)

(

1

S0
−Hk

∆(F,G∆)

)

(4.22)
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4.

Mk
γ (F )〈DF,DGσ〉k

= Mk
γ (F )

k
∑

j=1

σ
√

∆GjST

(

√

∆GjST

+

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)

σ
√

∆GjST

)

= Mk
γ (F )











1

σ

k
∑

j=1

σ2∆GjS
2
T





+



T
∂w

∂σ

k
∑

j=1

σ2∆GjS
2
T



+
n
∑

i=1

√

∆GiZi





k
∑

j=1

σ2∆GjS
2
T











=
1

σ
+

n
∑

i=1

√

∆GiZi + T
∂w

∂σ
. (4.23)

5.

Gσ〈DF,DMk
γ (F )〉k

=

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)

ST





k
∑

j=1

σ
√

∆GjST
(−2σ
√

∆Gj)

Mk
σ (F )





=

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)



−Mk
γ (F )

k
∑

j=1

σ2∆GjS
2
T





= −2

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)

. (4.24)

Thus,

Hk(F,Gσ) = (4.22)− (4.23)− (4.24)

= −S0

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)

(

1

S0
−Hk

∆(F,G∆)

)

−

{

1

σ
+

n
∑

i=1

√

∆GiZi + T
∂w

∂σ

}

+2

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)

= (−1− 1 + 2)T
∂w

∂σ
+ (−1− 1 + 2)

n
∑

i=1

√

∆GiZi −
1

σ

+S0H
k
∆(F,G∆)

(

T
∂w

∂σ
+

n
∑

i=1

√

∆GiZi

)

= S0H
k(F,G∆)

n
∑

i=1

√

∆GiZi + S0H
k(F,G∆)T

∂w

∂σ
−

1

σ
. (4.25)
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As a result vega is given by

V = e−rTE[φ(ST )

(

S0H
k(F,G∆)

n
∑

i=1

√

∆GiZi −
S0Hk(F,G∆)Tσ

1− θκ− σ2κ
2

−
1

σ

)

] (4.26)

since
∂w

∂σ
=

−σ

1− θκ− σ2κ
2

.

4.1.6. Greeks: V2. We express the weight for vega2 in terms of the weight of
delta.

V2 =
∂

∂κ

(

e−rTE[φ(ST )]
)

= e−rTE[φ′(ST )
∂ST

∂κ
] + E(κ)[φ(ST )]. (4.27)

where

E(κ)[φ(ST )] =

∫

Rn

∫

Rn

φ(ST )
n
∏

i=1

fN (xi; 0, 1)

×
∂

∂κ

(

n
∏

i=1

fG(yi; a∆ti, b)

)

dx1 . . . dxndy1 . . . dyn, (4.28)

where a = b = 1/κ. We define

F =
n
∏

i=1

fG(yi; ∆ti/κ, 1/κ), (4.29)

and we evaluate the partial derivative as follows:

∂

∂κ

(

n
∏

i=1

fG(yi; ∆ti/κ, 1/κ)

)

=
∂

∂κ
elog(F )

= F
∂

∂κ

(

n
∑

i=1

log(fG(yi; ∆ti/κ, 1/κ))

)

= F
∂

∂κ

(

n
∑

i=1

−∆ti
κ

log (κ)− log (Γ(
∆ti
κ

)) + (
∆ti
κ

− 1)yi −
yi
κ

)

= F
n
∑

i=1

∆ti
κ2

{

log(κ)− 1 + ψ(
∆ti
κ

)− log(yi) +
yi
∆ti

}

=
n
∏

i=1

fG(yi; ∆ti/κ, 1/κ)

(

T

κ2
(log(κ)− 1)

+
n
∑

i=1

∆ti
κ2

{

ψ(
∆ti
κ

)− log(yi) +
yi
∆ti

}

)

, (4.30)

where ψ(x) is the digamma function as denoted in [2]. Therefore,

e−rTE(α)[φ(ST )] = e−rTE[φ(ST )

(

T

κ2
(log(κ)− 1)

+
n
∑

i=1

∆ti
κ2

{

ψ(
∆ti
κ

)− log(yi) +
yi
∆ti

}

)

]. (4.31)
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We define GV2 =
∂ST

∂κ
=

∂w

∂κ
TST = S0

∂w

∂κ
T
∂ST

∂S0
= S0

∂w

∂κ
TG∆. Since S0

∂w

∂κ
T is

independent of Zi’s, Lemma (4.1) implies that

V2 = e−rTE[φ′(ST )S0
∂w

∂κ
TG∆] + Equation (4.31)

= e−rTE[φ(ST )H
k
∆(ST , S0

∂w

∂κ
TG∆)] + Equation (4.31)

= e−rTE[φ(ST )S0
∂w

∂κ
THk

∆(ST , G∆)] + Equation (4.31).

Thus,

Hk
V2
(ST , G∆) = S0

∂w

∂κ
THk

∆(ST , G∆)+
T

κ2
(log(κ)− 1)

+
n
∑

i=1

∆ti
κ2

{

ψ(
∆ti
κ

)− log(yi) +
yi
∆ti

}

,(4.32)

with

∂w

∂κ
= −

(θ + σ2/2)κ+ (1− θκ− σ2κ/2) log (1− θκ− σ2κ/2)

κ2
. (4.33)

The Malliavin weight given in Equation (4.32) has the term log (yi) for yi > 0. Thus,
theoretically the Mallivin weight is well defined. However, in simulations when the
weight is calculated for small values of yi the calculation of the logarithm takes longer
and results in very large negative numbers, as well. Thus, the variance of the weight
gets larger. We observe that the Malliavin approach does not converge. In the next
section, we introduce a localization method that improves the convergence .

4.2. NIG Model. In NIG model ST is given by

ST = S0e
(r+w)T+

∑n
i=1 δ

√
∆IGiZi+βδ

2 ∑n
i=1 ∆IGi, (4.34)

where IGt is the inverse Gaussian process used to subordinate the Wiener pro-
cess and ∆IGi = IGti − IGti−1 . Also, we define the following random set RS =
{(x1, . . . , xn, y1, . . . , yn) : (x1, . . . , xn, y1, . . . , yn) = (Z1, . . . , Zn,∆IG1, . . . ,∆IGn)}.
Also, recall that w = δ(

√

α2 − (β + 1)2 −
√

α2 − β2).

4.2.1. Greeks: ∆.

∆ = e−rT ∂

∂S0
E[φ(ST )] = e−rTE[φ′(ST )

ST

S0
] = E[φ(ST )H

k
∆(ST ,

ST

S0
)].

In the following list the detailed calculations of the terms in Equation (4.2) are given.
1. ST = F = f(Z1, . . . , Zn,∆IG1, . . . ,∆IGn).
2. DjF = ∂f

∂xj
|RS = δ

√
∆IGiST , ∀j such that 1 ≤ j ≤ k.

3. DjjF = ∂2f
∂x2

j

|RS = δ2∆IGiST , ∀j such that 1 ≤ j ≤ k.

4. GS0 = ∂ST

∂S0
= ∂f
∂S0

|RS = ST

S0
.

5. DjGS0 = δ
√
∆IGi

ST

S0
, ∀j such that 1 ≤ j ≤ k.

6. Θj(xj) =
d log (pj(xj))

dxj
= −xj , where pj(xj) =

1√
2π

e−
x2
j
2 , ∀j such that 1 ≤ j ≤

k.
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7. LjF = DjjF + Θj(Zj)DjF = δ2∆IGiST − Zjδ
√
∆IGiST , ∀j such that

1 ≤ j ≤ k.

8. Lk = −
k
∑

i=1

DjjF + Θj(Zj)DjF = −ST

k
∑

i=1

δ2∆IGi − Zjδ
√

∆IGi, for 1 ≤

k ≤ n.

9. Mk
σ (F ) =

k
∑

i=1

δ2∆IGiS
2
T > 0, for 1 ≤ k ≤ n.

10. DjM
k
σ (F ) = δ

√

∆IGiST 2ST

k
∑

i=1

δ2∆IGi

= 2δ
√
∆IGi
∑k

i=1 δ
2∆IGiS2

T = 2δ
√
∆IGiMk

σ (F ), ∀j such that 1 ≤ j ≤ k.

11. Mk
γ (F ) =

1

Mk
σ (F )

, for 1 ≤ k ≤ n.

12. DjM
k
γ (F ) = −

DjMk
σ (F )

(Mk
σ (F ))2

= −
2δ
√
∆IGiMk

σ (F )

(Mk
σ (F ))2

= −
2δ
√
∆IGi

Mk
σ (F )

The Malliavin weight follows from the above calculations:

Hk
∆(F,GS0) =

ST

S0
Mk
γ (F )

(

−ST

k
∑

i=1

(

δ2∆IGi − Zjδ
√

∆IGi

)

)

−Mk
γ (F )

k
∑

j=1

δ
√

∆IGiST δ
√

∆IGi
ST

S0

−
ST

S0

k
∑

j=1

δ
√

∆IGiST
(−2δ

√
∆IGi)

Mk
σ (F )

=
−1

S0
Mk
γ (F )





k
∑

i=1

δ2∆IGiS
2
T − S2

T

k
∑

j=1

Zjδ
√

∆IGi





−
1

S0
Mk
γ (F )

k
∑

j=1

δ2∆IGiS
2
T +

2

S0
Mk
γ (F )

k
∑

j=1

δ2∆IGiS
2
T

=
−1

S0
Mk
γ (F )



Mk
σ (F )− S2

T

k
∑

j=1

Zjδ
√

∆IGi





−
1

S0
Mk
γ (F )Mk

σ (F ) +
2

S0
Mk
γ (F )Mk

σ (F )

=
−1

S0
+

Mk
γ (F )

S0
S2
T

k
∑

j=1

Zjδ
√

∆IGi −
1

S0
+

2

S0

=
Mk
γ (F )

S0
S2
T

k
∑

j=1

Zjδ
√

∆IGi =
S2
T

∑k
j=1 Zjδ

√
∆IGi

S0
∑k

i=1 δ
2∆IGiS2

T

=

∑k
j=1 Zj

√
∆IGi

S0
∑k

i=1 δ∆IGi

. (4.35)
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Therefore, the delta of a call or digital option via the Malliavin weight is

∆ = e−rTE[φ(ST )

∑k
j=1 Zj

√
∆IGi

S0
∑k

i=1 δ∆IGi

]. (4.36)

4.2.2. Greeks: Γ. We express the weight for gamma in terms of the weight of
delta.

Γ = e−rT ∂2

∂S2
0

E[φ(ST )] = e−rT ∂

∂S0
E[φ′(ST )

ST

S0
] = e−rT ∂

∂S0
E[φ(ST )H

k
∆(ST ,

ST

S0
)]

= e−rTE[φ′(ST )
ST

S0
Hk

∆(ST ,
ST

S0
)] + E[φ(ST )

∂

∂S0
Hk

∆(ST ,
ST

S0
)] (4.37)

= e−rTE[φ(ST )H
k(ST ,

ST

S0
Hk

∆(ST ,
ST

S0
))] + e−rTE[φ(ST )

∂

∂S0
Hk

∆(ST ,
ST

S0
)] (4.38)

After taking the derivative in the last term, gamma is given as follows.

Γ = e−rTE[φ(ST )H
k(ST ,

ST

S0
Hk

∆(ST ,
ST

S0
))]− e−rTE[φ(ST )

1

S0
Hk

∆(ST ,
ST

S0
)]

= e−rTE[φ(ST )

(

Hk(ST ,
ST

S0
Hk

∆(ST ,
ST

S0
))−

1

S0
Hk

∆(ST ,
ST

S0
)

)

]. (4.39)

We use the integration by parts formula in order to remove the derivative in the first
term of Equation (4.37). Since F = ST , we use the F -related calculations that are
done for delta. Thus, we deal with a shorter list of calculations for gamma. In the
following list the detailed calculations of the terms in Equation (4.2) are given.

1. GΓ = ST

S0
Hk

∆(F,GS0 ).

2. DjGΓ = δ
√
∆IGiST

S0
Hk

∆(F,GS0 ) +
ST

S2
0

√
∆IGi∑

k
i=1 δ∆IGi

, ∀j such that 1 ≤ j ≤ k.

3.

GΓM
k
γ (F )LkF

=
ST

S0
Hk

∆(F,GS0 )M
k
γ (F )



−ST

k
∑

j=1

(

δ2∆IGi − Zjδ
√

∆IGi

)





= Hk
∆(F,GS0)



−Mk
γ (F )

k
∑

j=1

S2
T

S0
δ2∆IGi +

∑k
j=1

S2
T

S0
Zjδ

√
∆IGi

∑k
i=1 δ

2∆IGiS2
T





= Hk
∆(F,GS0)



−Mk
γ (F )Mk

σ (F ) +

∑k
j=1

S2
T

S0
Zjδ

√
∆IGi

∑k
i=1 δ

2∆IGiS2
T





= Hk
∆(F,GS0)

(

−
1

S0
+Hk

∆(F,GS0)

)

(4.40)

since Mk
γ (F )Mk

σ (F ) = 1.
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4.

Mk
γ (F )〈DF,DGΓ〉k

= Mk
γ (F )

k
∑

j=1

δ
√

∆IGiST

[

δ
√
∆IGiST

S0
Hk

∆(F,GS0) +
ST

S2
0

√
∆IGi

∑k
i=1 δ∆IGi

]

=
Hk

∆(F,GS0 )M
k
γ (F )

S0

k
∑

j=1

δ2∆IGiS
2
T +

Mk
γ (F )S2

T

S2
0

∑k
j=1 δ∆IGi
∑k

i=1 δ∆IGi

=
Hk

∆(F,GS0 )M
k
γ (F )

S0
Mk
σ (F ) +

Mk
γ (F )S2

T

S2
0

∑k
j=1 δ∆IGi
∑k

i=1 δ∆IGi

=
Hk

∆(F,GS0 )

S0
+

Mk
γ (F )S2

T

S2
0

. (4.41)

5.

GΓ〈DF,DMk
γ (F )〉k

= −
ST

S0
Hk

∆(F,GS0)
k
∑

j=1

δ
√

∆IGiST
2δ
√
∆IGi

Mk
σ (F )

= −
2

S0
Hk

∆(F,GS0)
k
∑

j=1

δ2∆IGiS
2
TM

k
γ (F )

= −
2

S0
Hk

∆(F,GS0)M
k
σ (F )Mk

γ (F )

= −
2

S0
Hk

∆(F,GS0). (4.42)

Thus,

Hk(F,GΓ) = (4.40)− (4.41)− (4.42)

= Hk
∆(F,GS0)

(

−
1

S0
+Hk

∆(F,GS0 )

)

−
Hk

∆(F,GS0 )

S0
−

Mk
γ (F )S2

T

S2
0

+
2

S0
Hk

∆(F,GS0)

= (Hk
∆(F,GS0 ))

2 −
Mk
γ (F )S2

T

S2
0

. (4.43)

This implies

Hk
Γ(F,GΓ) = (Hk

∆(F,GS0))
2 −

Mk
γ (F )S2

T

S2
0

−
1

S0
Hk

∆(ST ,
ST

S0
). (4.44)

Therefore,

Γ = e−rTE[φ(ST )

(

(Hk
∆(F,GS0 ))

2 −
Mk
γ (F )S2

T

S2
0

−
1

S0
Hk

∆(ST ,
ST

S0
)

)

]. (4.45)
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4.2.3. Greeks: ρ. We express the weight for rho in terms of the weight of delta.

ρ =
∂

∂r

(

e−rTE[φ(ST )]
)

= −Te−rTE[φ(ST )] + e−rTE[φ′(ST )
∂ST

∂r
]. (4.46)

We define Gρ =
∂ST

∂r
= TST = TS0

ST

S0
= TS0G∆. Thus, we rewrite ρ in terms of

G∆ as

ρ = −Te−rTE[φ(ST )] + e−rTE[φ′(ST )TS0G∆]

= −Te−rTE[φ(ST )] + TS0e
−rTE[φ(ST )H

k
∆(F,G∆)]

= e−rTE[φ(ST )T (S0H
k(F,G∆)− 1)] (4.47)

Equation (4.47) implies that

Hk
ρ (ST , H

k(F,G∆)) = T (S0H
k(F,G∆)− 1), (4.48)

where F = ST .

The sensitivities D, V , V2 are given after calculating the sensitivities with respect
to Barndoff-Nielsen parametrization. However, these parameters also determine the
distribution of the inverse Gausssian increments. Therefore, differentiating under the
expectation implies the differentiating the probability density of the inverse Gausssian
increments, as well. Thus, the sensitivities with respect to these parameters are given
as follows:

4.2.4. Sensitivity with respect to β.

∂u(β)

∂β
= e−rTE[φ′(ST )

∂ST

∂β
] + e−rTE(β)[φ(ST )], (4.49)

where

E(β)[φ(ST )] =

∫

Rn

∫

Rn

φ(ST )
n
∏

i=1

fN (xi; 0, 1)
∂

∂β

×

(

n
∏

i=1

fIG(yi; ∆ti, b)

)

dx1 . . . dxndy1 . . . dyn, (4.50)

where b = δ
√

α2 − β2. We define

F =
n
∏

i=1

fIG(yi; ∆ti, b), (4.51)

and we evaluate the partial derivative as follows:
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∂

∂β

(

n
∏

i=1

fIG(yi; ∆ti, b)

)

=
∂

∂β
elog(F )

= F
∂

∂β

(

n
∑

i=1

log(fIG(yi; ∆ti, b))

)

= F
∂

∂β

(

n
∑

i=1

log

(

∆ti√
2π

)

+∆tib−
3

2
log(yi)−

(∆ti)2

2yi
−

b2yi
2

)

= F
n
∑

i=1

∆ti
∂b

∂β
−

∂b

∂β
byi

=
n
∏

i=1

fIG(yi; ∆ti, b)
n
∑

i=1

(∆ti − byi)
∂b

∂β
. (4.52)

Therefore,

E(β)[φ(ST )] = E[φ(ST )
n
∑

i=1

(∆ti − b∆IGi)
∂b

∂β
]. (4.53)

The first term of Equation (4.49) involves the derivative operator. We apply Theorem

(3.7) to remove the derivative in the expectation. We define Gβ =
∂ST

∂β
. In the

following list the detailed calculations of the terms in Equation (4.2) are given.

1. Gβ =

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

ST .

2. DjGβ =

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

δ
√

∆IGjST

3.

GβM
k
γ (F )LkF

=

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

STM
k
γ (F )



−ST

k
∑

j=1

(

δ2∆IGj − Zjδ
√

∆IGj

)





=

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)(

−1 + S0

∑k
j=1 Zjδ

√

∆IGj

S0
∑n

i=1 δ
2∆IGj

)

=

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

(−1 + S0H
k
∆(F,G∆)). (4.54)

4.

Mk
γ (F )〈DF,DGβ〉k

= Mk
γ (F )

k
∑

j=1

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

δ2∆IGjS
2
T
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=

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

Mk
γ (F )

k
∑

j=1

δ2∆IGjS
2
T

=

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

(4.55)

5.

Gβ〈DF,DMk
γ (F )〉k

= −

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

ST

k
∑

j=1

δ
√

∆IGjST
2δ
√

∆IGj

Mk
σ (F )

= −2

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

Mk
γ (F )

k
∑

j=1

S2
T δ

2∆IGj

= −2

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

(4.56)

Thus,

Hk(F,Gβ) = (4.54)− (4.55)− (4.56)

=

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

(S0H
k
∆(F,G∆)). (4.57)

Together with Equation (4.53) this implies

∂u(β)

∂β
= e−rTE[φ(ST )

((

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

S0H
k
∆(F,G∆)

+

(

n
∑

i=1

(∆ti − b∆IGi)
∂b

∂β

))

] (4.58a)

Hence, after summing up ∆ti’s over the time grid:

= e−rTE[φ(ST )

((

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

S0H
k
∆(F,G∆)

+

(

T −
n
∑

i=1

b∆IGi

)

∂b

∂β

)

] (4.58b)

with

∂w

∂β
=

δβ
√

α2 − β2
−

δ(β + 1)
√

α2 − (β + 1)2
, (4.59)

∂b

∂β
= −

δβ
√

α2 − β2
. (4.60)
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4.2.5. Sensitivity with respect to δ.

∂u(δ)

∂δ
= e−rTE[φ′(ST )

∂ST

∂δ
] + e−rTE(δ)[φ(ST )], (4.61)

where

E(δ)[φ(ST )] =

∫

Rn

∫

Rn

φ(ST )
n
∏

i=1

fN (xi; 0, 1)
∂

∂δ

×

(

n
∏

i=1

fIG(yi; ∆ti, b)

)

dx1 . . . dxndy1 . . . dyn, (4.62)

where b = δ
√

α2 − β2. We define

F =
n
∏

i=1

fIG(yi; ∆ti, b), (4.63)

and we evaluate the partial derivative as follows:

∂

∂δ

(

n
∏

i=1

fIG(yi; ∆ti, b)

)

=
∂

∂δ
elog(F )

= F
∂

∂δ

(

n
∑

i=1

log(fIG(yi; ∆ti, b))

)

= F
∂

∂δ

(

n
∑

i=1

log

(

∆ti√
2π

)

+∆tib−
3

2
log(yi)−

(∆ti)2

2yi
−

b2yi
2

)

= F
n
∑

i=1

∆ti
∂b

∂δ
−

∂b

∂δ
byi

=
n
∏

i=1

fIG(yi; ∆ti, b)
n
∑

i=1

(∆ti − byi)
∂b

∂δ
. (4.64)

Therefore,

E(δ)[φ(ST )] = E[φ(ST )
n
∑

i=1

(∆ti − b∆IGi)
∂b

∂δ
]. (4.65)

The first term of Equation (4.61) involves the derivative operator. We apply Theorem

(3.7) to remove the derivative in the expectation. We define Gδ =
∂ST

∂δ
. In the

following list the detailed calculations of the terms in Equation (4.2) are given.

1. Gδ =

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

ST .

2. DjGδ =
√

∆IGjST +

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

δ
√

∆IGjST
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3.

GδM
k
γ (F )LkF

=

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

STM
k
γ (F )

×



−ST

k
∑

j=1

(

δ2∆IGj − Zjδ
√

∆IGj

)





=

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)(

−1 + S0

∑k
j=1 Zjδ

√

∆IGj

S0
∑n

i=1 δ
2∆IGj

)

=

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

(−1 + S0H
k
∆(F,G∆)). (4.66)

4.

Mk
γ (F )〈DF,DGδ〉k

= Mk
γ (F )

k
∑

j=1

δ∆IGjS
2
T

+

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

δ2∆IGjS
2
T

=
Mk
γ (F )

δ

k
∑

j=1

δ2∆IGjS
2
T

+Mk
γ (F )

k
∑

j=1

δ2∆IGjS
2
T

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

=
1

δ
+ T

∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi (4.67)

5.

Gδ〈DF,DMk
γ (F )〉k

= −

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

×ST

k
∑

j=1

δ
√

∆IGjST
2δ
√

∆IGj

Mk
σ (F )

= −2

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

Mk
γ (F )

k
∑

j=1

S2
T δ

2∆IGj

= −2

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

(4.68)
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Thus,

Hk(F,Gδ) = (4.66)− (4.67)− (4.68)

= −
1

δ
+

(

T
∂w

∂δ

+
n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

S0H
k
∆(F,G∆). (4.69)

Together with Equation (4.65) this implies

∂u(δ)

∂δ
= e−rTE[φ(ST )

(

−
1

δ
+

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

S0H
k
∆(F,G∆)

+

(

n
∑

i=1

(∆ti − b∆IGi)
∂b

∂δ

))

]

Hence, after summing up ∆ti’s over the time grid:

= e−rTE[φ(ST )

(

−
1

δ
+

(

T
∂w

∂δ
+

n
∑

i=1

√

∆IGiZi + 2βδ
n
∑

i=1

∆IGi

)

S0H
k
∆(F,G∆)

+

(

T −
n
∑

i=1

b∆IGi

)

∂b

∂δ

)

]

with

∂w

∂δ
=
√

α2 − (β + 1)2 −
√

α2 − β2, (4.71)

∂b

∂δ
=
√

α2 − β2. (4.72)

4.2.6. Sensitivity with respect to α.

∂u(α)

∂α
=

∂

∂α

(

e−rTE[φ(ST )]
)

= e−rTE[φ′(ST )
∂ST

∂α
] + e−rTE(α)[φ(ST )], (4.73)

where

E(α)[φ(ST )] =

∫

Rn

∫

Rn

φ(ST )
n
∏

i=1

fN (xi; 0, 1)

×
∂

∂α

(

n
∏

i=1

fIG(yi; ∆ti, b)

)

dx1 . . . dxndy1 . . . dyn, (4.74)

where b = δ
√

α2 − β2. We define

F =
n
∏

i=1

fIG(yi; ∆ti, b), (4.75)



Malliavin Calculus for Levy Markets 31

and we evaluate the partial derivative as follows:

∂

∂α

(

n
∏

i=1

fIG(yi; ∆ti, b)

)

=
∂

∂α
elog(F )

= F
∂

∂α

(

n
∑

i=1

log(fIG(yi; ∆ti, b))

)

= F
∂

∂α

(

n
∑

i=1

log

(

∆ti√
2π

)

+∆tib−
3

2
log(yi)−

(∆ti)2

2yi
−

b2yi
2

)

= F
n
∑

i=1

∆ti
∂b

∂α
−

∂b

∂α
byi

=
n
∏

i=1

fIG(yi; ∆ti, b)
n
∑

i=1

(∆ti − byi)
∂b

∂α
. (4.76)

Therefore,

E(α)[φ(ST )] = E[φ(ST )
n
∑

i=1

(∆ti − b∆IGi)
∂b

∂α
]. (4.77)

The first term of Equation (4.61) involves the derivative operator. We apply Theorem

(3.7) to remove the derivative in the expectation. We define Gα =
∂ST

∂α
. In the

following list the detailed calculations of the terms in Equation (4.2) are given.

1. Gα = T
∂w

∂α
ST .

2. DjGα = T
∂w

∂α
δ
√

∆IGjST

3.

GαM
k
γ (F )LkF = T

∂w

∂α
STM

k
γ (F )



−ST

k
∑

j=1

(

δ2∆IGj − Zjδ
√

∆IGj

)





= T
∂w

∂α

(

−1 + S0

∑k
j=1 Zjδ

√

∆IGj

S0
∑n

i=1 δ
2∆IGj

)

= T
∂w

∂α
(−1 + S0H

k
∆(F,G∆)). (4.78)

4.

Mk
γ (F ) < DF,DGα >k = Mk

γ (F )
k
∑

j=1

T
∂w

∂α
δ2∆IGjS

2
T

= T
∂w

∂α
(4.79)
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5.

Gα < DF,DMk
γ (F ) >k = −T

∂w

∂α
ST

k
∑

j=1

δ
√

∆IGjST
2δ
√

∆IGj

Mk
σ (F )

= −2T
∂w

∂α
Mk
γ (F )

k
∑

j=1

S2
T δ

2∆IGj

= −2T
∂w

∂α
(4.80)

Thus,

Hk(F,Gα) = (4.78)− (4.79)− (4.80)

= T
∂w

∂α
S0H

k
∆(F,G∆). (4.81)

Together with Equation (4.77) this implies

∂u(α)

∂α
= e−rTE[φ(ST )

(

T
∂w

∂α
S0H

k
∆(F,G∆) +

(

n
∑

i=1

(∆ti − b∆IGi)
∂b

∂α

))

]

= e−rTE[φ(ST )

(

T
∂w

∂α
S0H

k
∆(F,G∆) +

(

T −
n
∑

i=1

b∆IGi

)

∂b

∂α

)

],

after summing up ∆ti’s over the time grid, and with

∂w

∂α
= δα

(

1
√

α2 − (β + 1)2
−

1
√

α2 − β2

)

, (4.82)

∂b

∂α
=

δα
√

α2 − β2
. (4.83)

5. Localization Functions. When the sensitivity is calculated by using the
Malliavin calculus, the Malliavin weight might grow during the simulation causing a
higher variance. Thus, the speed of convergence will be slower. In order to avoid this
problem we use the variance reduction method that is introduced in [12]. We use a
localization function which vanishes out of an interval [K − δ,K + δ] for some δ > 0.
We first define functions Bδ and Gδ where Bδ is the derivative of Gδ.

Bδ(x) =







0 if x < K − δ
L′(x) if x ∈ [K − δ,K + δ]
R′(x) if x > K + δ

, (5.1)

and

Gδ(x) =

∫ y

−∞
Bδ(x)dx

=







0 if y < K − δ
L(y) if y ∈ [K − δ,K + δ]
R(y) if y > K + δ,

(5.2)



Malliavin Calculus for Levy Markets 33

where R(y) = y−K for a call option and R(y) = 1 for a digital option. The smooth

approximation of the pay-off function is L(y) = (y−(K−δ))2
4δ for a call option.

We introduce L(y) = exp

(

−
(

y−(K+aδ)
y−(K−aδ)

)b
)

as the smooth approximation of the

digital option’s pay-off function in the interval [K − δ,K + δ], where a is a positive
real number and b is an even integer.
Hence, we define the localization function

Fδ(y) = max(R(y), 0)−Gδ(y) (5.3)

=















0 if y < K − δ
−L(y) if y ∈ [K − δ,K]
R(y) − L(y) if y ∈ [K,K + δ]
0 if y > K + δ.

(5.4)

As it can be seen in Figure 5.1, Gδ becomes steeper for larger values of b enabling a
better approximation of the digital option’s pay-off function. However, the interval
where Gδ is non-zero shrinks and the effect of localization vanishes.

By using Equation (5.3), pay-off function is given by φ(y) = Fδ(y) + Gδ(y) en-
abling us to write, for instance, the Greek, ∆ as follows;

∂E[φ(ST )]

∂S0
=

∂E[Fδ(ST )]

∂S0
+

∂E[Gδ(ST )]

∂S0

= E[Fδ(ST )H
k(ST ,

∂ST

∂S0
)] + E[Bδ(ST )

∂ST

∂S0
]. (5.5)

We took r = 0 to simplify the expressions in above. Since Fδ vanishes out the interval
[K−δ,K+δ] the contribution of large values of ST in the Malliavin weight will vanish,
as well.

A third term needs to be added in Equation (5.5) when we are calculating
the derivatives of an option with respect to the parameters in the Barndoff-Nielsen
parametrization of NIG model. To be more specific, let us consider the partial deriva-
tive with respect to β, i.e.

∂E[φ(ST )]

∂β
=

∂E[Fδ(ST )]

∂β
+

∂E[Gδ(ST )]

∂β
(5.6)

= E[Fδ(ST )H(ST ,
∂ST

∂β
)] + E[Bδ(ST )

∂ST

∂β
] + E(β)[Gδ(ST )], (5.7)

where E(β)[·] is the expectation after the partial derivative of IG density is taken 3

and

H(ST ,
∂ST

∂β
) =

(

T
∂w

∂β
+ δ2

n
∑

i=1

∆IGi

)

S0H
k
∆(F,G∆) +

(

T −
n
∑

i=1

b∆IGi

)

∂b

∂β
(5.8)

is the weight in Equation (4.58b). We also introduce the variations of (5.6) by mixing
it with the finite difference method when a function is smooth. We explain these
variations and the notation that we use to denote them in the presence of above
example for NIG model:

3The definition is given in Equation (4.50).
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• NIGM: Global Malliavin sensitivity for NIG model,

∂E[φ(ST )]

∂β
= E[φ(ST )H(ST ,

∂ST

∂β
)].

• NIGML: Local Malliavin sensitivity for NIG model,

∂E[φ(ST )]

∂β
= E[Fδ(ST )H(ST ,

∂ST

∂β
)] + E[Bδ(ST )

∂ST

∂β
] + E(β)[Gδ(ST )].

• NIGMLF: Local Malliavin sensitivity for NIG model with finite difference
method used in the second term of Equation (5.6),

∂E[φ(ST )]

∂β
= E[Fδ(ST )H(ST ,

∂ST

∂β
)] +

u(ST , β + h)− u(ST , β − h)

2h
,

where u(ST , β) = E[Gδ(ST )].
• NIGMLFF: Local Malliavin sensitivity for NIG model with finite differ-
ence method used in first and second terms of Equation (5.6). The weight
H(ST ,

∂ST

∂β ) given in Equation (5.8) has two terms. The second term comes

from the partial derivative of the product density function, F(β), of IG dis-
tribution with respect to β. Since F is smooth in β, we use finite difference
method to calculate the derivative. In order to accomplish this, we only
shift β in the density. This is equivalent to simulating ST from the following
functional form, S∗

T

S∗
T (β ± h) = S0e

(r−q+w(β))T+
∑n

i=1 δ
√

∆IGi(β±h)Zi+βδ
2 ∑n

i=1 ∆IGi(β±h). (5.9)

Hence,

∂E[φ(ST )]

∂β
= E[Fδ(ST )H

k(ST ,
∂ST

∂β
)]

+
E[Fδ(S∗

T (β + h))]− E[Fδ(S∗
T (β − h))]

2h

+
u(ST , β + h)− u(ST , β − h)

2h
,

where Hk(ST ,
∂ST

∂β ) is the first term of the summation in (5.8).
• VGMF: Global Malliavin sensitivity for VG model with finite difference
method used to calculate E(κ)[φ(ST )]. When we are calculating Vega2 in
the VG model the weight has a logarithmic term as functional of the Gamma
random numbers. Thus, as smaller Gamma random numbers drawn during
the Monte-Carlo simulations, logarithmic term gets larger values and this
causes large variance in the simulations. In order to get rid of the large vari-
ance, we apply the finite difference method in order to take the derivative
of the Gamma product density with respect to κ by following the method
explained for NIGMLFF but without using any localization. Thus,

V2 =
∂

∂κ
(E[φ(ST )])

= E[φ(ST )H
k(ST ,

∂ST

∂κ
)] +

E[φ(S∗
T (κ+ h)]− E[φ(S∗

T (κ− h)]

2h
,(5.10)
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where

Hk(ST ,
∂ST

∂κ
) = S0

∂w

∂κ
THk

∆(ST , G∆)

and

S∗
T (κ± h) = S0e

(r+w(κ))T+
∑n

i=1 σ
√

∆Gi(κ±h)Zi+θ
∑n

i=1 ∆Gi(κ±h). (5.11)

6. Data and Numerical Results. We used S&P 500 index European option
data for our numerical implementations, [1]. The figures that represent the numer-
ical results are obtained for the average of the bid and ask prices in August 06,
2008. During the option’s model calibration process we used the fast Fouriér trans-
form method as it is discussed in [16]. As we implement the nonlinear least square
method we used implied vega of the each option in order to weight the squared
differences as suggested in [9]. Hence, we obtained the following values for the pa-
rameters of each model: σBS = 0.2002, (σVG, θ VG, κVG) = (0.0102,−1.4552, 0.0198),
(αNIG, β NIG, δNIG) = (21.8248,−6.1882, 0.7934) and Cont-Tankov [9] parametrization
values of NIG are (σNIG, θ NIG, κNIG) = (0.1947,−0.2346, 0.0602).

The comparison between different localizations of Malliavin and finite difference
approaches depend on the benchmark line that is obtained by evaluating the integrals
given in Section 2 and we call that line as VGFFT or NIGFFT. We also present ±1%
of the FFT line. We used the centered finite difference (CF) method as it is given in
Section 5. Thus, for gamma it turns out to be

∂∆

∂S0
=

E[φ(ST (S0 + h))]− 2E[φ(ST (S0))] + E[φ(ST (S0 − h))]

h2
.

The parameter values that are used during the simulations represent the market with
S0 = 1289.19, r = 2.8152% and q = 2.04%. We run simulations for an ATM op-
tion with T = 0.3726. The choice of h depends on the number of paths, M such
that h = M−1/5 as discussed in [14]. The localization parameters are chosen as
(a, b, δ) = (1, 2, 150). We generate inverse Gaussian random numbers by using the al-
gorithm introduced in [18]. Since the European type call and digital options are path
independent, we used one time step. This results in the parameter a = T/κ of the
gamma distribution to be larger than one. Hence, we use Fishman’s generator, [11]
for small number of simulations and for the large ones Marsaglia and Tsang’s faster
gamma random number generator, [17]. We also used the common random numbers
in the path generation in order to reduce the variance in finite difference method.

In Figure 6.1, we present the simulation results of delta, gamma and rho under
NIG and VG models for call options. We observe that NIGML has a remarkable im-
provement on NIGM when delta and rho are simulated. However, Malliavin approach
does not bring improvement on CF. When gamma is simulated NIGM is converging
in the ±1% band while CF does not. Due to the strong discontinuity of the digital
option, the convergence of CF is very slow as it is seen in Figure 6.3. Improvement
of localization in Malliavin approach is observed, as well.

Figure 6.2 presents the alpha, beta and delta sensitivities of Barndoff-Nielsen
parametrization of NIG model together with drift, vega and vega2 sensitivities of
Cont-Tankov parametrization. NIGM and NIGML outperforms CF in Figures 6.2(a),
6.2(b). However, the simulations for delta sensitivity in Figure 6.2(c) shows that CF
outperforms all of the variations of Malliavin approach except NIGMLFF. As we ob-
tain the Figures 6.2(d), 6.2(e) and 6.2(f), we use Equation (2.10). The dotted lines of
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±1% of the FFT line are also obtained by mapping ±1% of the FFT lines of Figures
6.2(a), 6.2(b) and 6.2(c). NIGMBEST is the combination of the best of the varia-
tions of Malliavin approach under Barndoff-Nielsen parametrization. Thus, for this
simulations we used (∂C∂α ,

∂C
∂β ,

∂C
∂δ ) = (NIGM,NIGML,NIGMLFF). The digital option

simulations are shown in Figure 6.4 with (∂C∂α ,
∂C
∂β ,

∂C
∂δ ) = (NIGM,NIGML,NIGMLF).

After a simulation of M = 107, it is clear that CF is outperformed by NIGMBEST
and NIGM for all simulations for both call and digital options.

Finally, drift, vega and vega2 under VG model are given in Figure 6.5. For both
digital and call options VGML and VGMLF improve the convergence of the Malliavin
approach and outperforms the CF for digital option. However, none of the methods
converge in the vega simulations of the digital option even after 108 simulations. On
the other hand, VGML outperforms CF for call option after simulating vega. As we
discussed in Section 4.1.6, even tough the Malliavin weight without localization is
well-defined, it tends to explode during the Monte Carlo simulations as small gamma
random numbers are generated. We used VGMF as a combined weight obtained by
the Malliavin calculus and the finite difference method. The other method VGMLFF
extends it by using a localization function. Simulations of vega2 of the digital option
converge as we use these methods. Figure 6.5(f) shows that convergence in VGMLFF
method is better. Figure 6.5(e) shows that in the call option case neither of the
methods including the centered finite difference do not yield converging simulations.

Conclusion and Discussion. In this paper we introduce new sensitivities of the
option contracts when the underlying is modelled by an exponential Variance Gamma
or a Normal Inverse Gaussian process. We analyse new sensitivities, drift, vega and
vega2 together with the Greeks of the options that are written on S&P 500 index.
We also introduced the use of the Malliavin calculus through Brownian subordination
of the VG and NIG processes. We obtained discrete formulas that can be used in
the Monte-Carlo simulations directly. In the digital option case we observed that
Malliavin calculus outperforms the centered finite difference method. However, for call
and digital options the use of the Malliavin calculus may not improve the convergence
of the simulations when the index is modelled by Variance Gamma process. When
we run the simulations for the sensitivities except for gamma the Malliavin approach
and its variations that we introduced perform at most as good as the centered finite
difference method. Exceptions that the variations of Malliavin approach performs
slightly better are the vega of the call option and the drift of the digital option. On
the other hand, when the index is modelled by the NIG process, Malliavin calculus
outperforms centered finite difference method for all of the sensitivities except delta
of the call option. However, even in that case a variation of the Malliavin approach
is performing as good as centered finite difference method. We certainly suggest to
use the Malliavin calculus for the sensitivity calculations of options when the index
is modelled by a Normal Inverse Gaussian process and when it comes to model the
index with the VG process we suggest to use the finite difference method.

In Section 3 we give a generalized finite dimensional Malliavin calculus. Hence, as
we calculate the Malliavin weight we only use the normal random variables that arise
from the discretization scheme of the Brownian subordination of the VG and NIG
processes. If gamma random variables are also introduced in the weight we obtained
a better convergence in the VG case of the delta simulations. We will discuss the
details of this approach and the applications to other sensitivities in our forthcoming
paper.
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Fig. 2.1. Call Option’s Delta and Gamma under BS, VG and NIG models.
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Fig. 2.2. Call Option’s Rho and Theta under BS, VG and NIG models.
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Fig. 2.3. Call Option’s Drift, Vega and Vega2 under VG and NIG models.
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Fig. 2.4. Call Option’s Vega under BS model.
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Fig. 6.1. Call Option’s Delta, Gamma, Rho under VG and NIG models.
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Fig. 6.2. Call Option’s Drift, Vega and Vega2 sensitivities under NIG model.
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Fig. 6.3. Digital Call Option’s Delta, Gamma, Rho under VG and NIG models.
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Fig. 6.4. Digital Call Option’s Drift, Vega and Vega2 sensitivities under NIG model.
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Fig. 6.5. Digital Call and Call Options’ Drift and Vega sensitivities under VG model.
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