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Abstract. We present a formula for computing proper pushforwards of classes in the
Chow ring of a projective bundle under the projection π : P(E )→ B, for B a non-singular
compact complex algebraic variety of any dimension. Our formula readily produces gen-
eralizations of formulas derived by Sethi,Vafa, and Witten to compute the Euler charac-
teristic of elliptically fibered Calabi-Yau fourfolds used for F-theory compactifications of
string vacua. The utility of such a formula is illustrated through applications, such as the
ability to compute the Chern numbers of any non-singular complete intersection in such a
projective bundle in terms of the Chern class of a line bundle on B.

1. Introduction

Let B be a non-singular compact complex algebraic variety, and L a line bundle on B.
We consider a rank (n + 1) vector bundle E → B, which is a direct sum of powers of L ,
i.e.,

E = L a1 ⊕ · · · ⊕L an+1

ai ∈ Z, and its associated projectivization1 P(E ) π→ B. Such a projective bundle provides
a natural habitat for relative varieties over B with an explicit fibration structure. For C ∈
A∗P(E ), we give a formula for computing the canonical pushforward π∗(C) in terms of L =
c1(L ). Due to the fact that

∫
P(E )C =

∫
B π∗(C), such a formula reduces integration on P(E )

to integration on the base B, and so is useful for computing topological invariants of varieties
in projective bundles (such as Chern numbers, for example). Our motivation comes from F-
theory, which from a mathematical standpoint is the study of elliptically fibered Calabi-Yau
fourfolds, which arise naturally as hypersurfaces (or complete intersections) in projective
bundles of the form stated above over some three dimensional B. Determination of the
Euler characteristics of such fourfolds are crucial for tadpole cancellation in F-theory, as
our formula was derived in an attempt to streamline such calculations. However, knowledge
of F-theory will not be assumed, as the results here appear in a more general context.

By the structure theorem for the Chow group of a projective bundle [3], the map p :
A∗B[ζ]→ A∗P(E ) given by

β0 + β1ζ + · · ·+ βrζ
r 7−→ π∗β0 + π∗β1 · c1(OP(E )(1)) + · · ·+ π∗βr · c1(OP(E )(1))r

is a surjective morphism of rings. Thus any C ∈ A∗P(E ) may be realized as a polynomial
in ζ with coefficients in A∗B, though not uniquely(e.g. p(ζn+dim(B)) = 0 in A∗P(E )). We
elaborate more on the structure of A∗P(E ) in §3. With these facts in mind, we state the
main result of this note:

Theorem 1.1. With notation and assumptions as above, let C ∈ A∗P(E ), and let fC =
β0 + · · · + βsζ

s be any such polynomial which maps to C under the natural projection p :

1Here we take the projective bundle of lines in E .
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A∗B[ζ]→ A∗P(E ), then

π∗(C) =
N∑
j=1

m∑
i=1

qij
1

(j − 1)!
dj−1

dζj−1
(fCj )|ζ=−diL

where m and the dis are inherited form the unique factorization the Chern class of E , i.e.,
c(E ) = (1+d1L)k1 · · · (1+dmL)km, N = max{ki}, fCj = 1

ζn−j+1 ·(fC−(β0+· · ·+βn−1ζ
n−1)),

and qij ∈ Q are the coefficients of the formal partial fraction decomposition of 1
c(E ) =

1
(1+d1L)k1 ···(1+dmL)km

=
N∑
j=1

m∑
i=1

qij
1

(1 + diL)j
.

For many applications, such as computing pushforwards of Chern classes of elliptic fi-
brations used in F-theory compactifications of string vacua, this deceptively complicated
formula involves no more than three summands. The double summation merely reflects the
fact that we have to keep track of the partial fraction decomposition of 1

c(E ) . The utility
of such a formula lies in the fact that many classes C ∈ A∗P(E ) one encounters in nature
are given in terms of rational expressions in ζ = c1(OP(E )(1)) and pullbacks of classes in B,
which can easily be expanded as a series in ζ, giving one such a polynomial fC . Once such
a polynomial is in hand, all that is needed is a partial fraction decomposition of 1

c(E ) to
compute π∗(C). As the above discussion might suggest, such a formula lends itself naturally
to a simple algorithm which can be easily implemented in computing devices.

We would like to point out that the non-singular hypothesis on B is not absolutely
necessary, for if B is singular Theorem 1.1 still applies to classes C in the Chow group of
a projective bundle over B, long as the coefficients in the polynomial representation of C
described above are pullbacks of Chern classes of vector bundles on B, as we will see in §3.

Acknowledgements. The author would like to thank Paolo Aluffi for continued guidance
and support, as well as being the impetus from which this work has sprung. He would also
like to thank Mirroslav Yotov for proof reading and useful discussions.

2. Sethi-Vafa-Witten Formulas

Motivated by tadpole cancellation in F-theory, in [5] Sethi, Vafa, and Witten derived a
formula for computing the Euler characteristic of an elliptically fibered Calabi-Yau fourfold
in Weierstrass form in terms of the Chern classes of its base. Similar formulas for elliptic
fibrations not in Weierstrass form were derived in [4]. In [2], Aluffi and Esole showed that
these formulas are merely avatars of more general Chern class relations, which relate the
canonical pushforward of the Chern class of the elliptic fibration with the Chern class of a
divisor in the base, and which hold without any Calabi-Yau hypothesis or restrictions on
the dimension of the base. A general scheme for producing such formulas was the primary
motivation for this note.

2.1. Elliptic fibrations. Let B be a non-singular compact complex algebraic variety en-
dowed with a line bundle L . The elliptic fibrations we consider will be constructed by
taking general equations of classical elliptic curves over a field k, and promoting their coef-
ficients from general elements of k to general sections of appropriate powers of L (indeed,
elliptic curves can be thought of as elliptic fibrations over a point). Such an equation natu-
rally determines an elliptic fibration ϕ : Y → B, in which Y is realized as the zero-scheme
of a section of a certain line bundle on P(E ), where E is a direct sum of powers of L . We
lift terminology from the physics literature in what follows.
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Let E = L a1 ⊕L a2 ⊕L a3 . For (a1, a2, a3) = (0, 1, 1), we define an E6 elliptic fibration
over B to be a non-singular hypersurface Y in P(E ), determined by the equation

E6 : x3 + y3 = dxyz + exz2 + fyz2 + gz3

where x,y,and z are sections of OP(E )(1)⊗L , OP(E )(1)⊗L , and OP(E )(1) respectively, and
d, e, f , and g are chosen to be suitably generic sections of L , L 2, L 2, and L 3 respectively.2

Similarly, for (a1, a2, a3) = (0, 1, 2), an E7 elliptic fibration is a non-singular hypersurface
Y in the weighted projectivization P1,1,2(E ), determined by the equation

E7 : y2 = x4 + ex2z2 + fxz3 + gz4

where e, f , and g are chosen to be sections of L 2, L 3, and L 4 respectively, and x, y, and z
are chosen to be sections of appropriate line bundles so that each monomial in the equation
for Y is a section of OP(E )(4)⊗L 4.

The last family of elliptic fibrations we will mention are referred to in the physics literature
as E8 elliptic fibrations, determined by the Weierstrass normal equation

E8 : y2z = x3 + fxz2 + gz3

Here, (a1, a2, a3) = (0, 2, 3), f and g are sections of L 4 and L 6 respectively, and again
x, y, and z are chosen to be sections of appropriate line bundles so that each monomial
in the equation for Y is a section of OP(E )(3) ⊗L 6. As in the theory of algebraic curves,
every non-singular elliptic fibration with a section is birational to an elliptic fibration in
Weierstrass form, i.e., an E8 fibration. Because of this, often E8 elliptic fibrations are
singled out in the F-theory literature. Though such a model is useful for computing the
j-invariant as well as the location of the singular fibers of such a fibration, singular fibers
are not preserved under a birational map. As the singular fibers are crucial not only to
the geometry of an elliptic fibration (e.g., only the singular fibers contribute to its Euler
characteristic), but the physical interpretation as well ([6], p. 21), alternate forms of elliptic
fibrations not in Weierstrass form such as the E6 and E7 cases listed above (and ones not
listed above) should perhaps stand on equal footing from a physical perspective. Be that
as it may, we now summarize the results referenced in the beginning of this section, along
with an application of Theorem 1.1.

Theorem 2.1. ( [2]) Let ϕ : Y → B be an elliptic fibration of type E6, E7, or E8(as defined
above), and Z a smooth hypersurface in B in the same class as g = 0. Then

ϕ∗c(Y ) = m · c(Z),

where m=4,3,2 respectively for Y of type E6, E7, E8, respectively.

Before an illustration of how Theorem 1.1 can be used to reproduce such formulas, we
state a corollary of Theorem 2.1, which follows from the fact that taking the degree of a zero
dimensional class is invariant under proper pushforwards, i.e.,

∫
ϕ∗c(Y ) =

∫
c(Y ) = χ(Y ),

and the fact that Y is Calabi-Yau if and only if c1(B) = c1(L ).3

2Here and throughout, we often write L a when we mean π∗L a. The use of this elision should be clear
from the context in which it is used.

3The reader not familiar with this fact may enjoy proving this using B.5.8 in [3].
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Corollary 2.2. ([5], [4]) Let Y → B be an elliptic fibration of type E6, E7, or E8, with Y
a Calabi-Yau fourfold. Then

E6 : χ(Y ) =
∫

12c1(B)c2(B) + 72c1(B)3

E7 : χ(Y ) =
∫

12c1(B)c2(B) + 144c1(B)3

E8 : χ(Y ) =
∫

12c1(B)c2(B) + 360c1(B)3

Remark 2.3. Though indeed Corollary 2.2 is a consequence of Theorem 2.1, chronologically
Corollary 2.2 appeared first. We would like to think of Theorem 2.1 as a representation of
a deeper, more precisely formulated geometric relationship between the fibration and the
base than that of Corollary 2.2.

We now illustrate the utility of Theorem 1.1 with a proof of Theorem 2.1 in the E8 case.

Proof. Let L = c1(L ), H = c1(OP(E )(1)), and denote the projection P(E ) → B by π. By
adjunction and B.5.8 in [3],

c(Y ) =
(1 +H)(1 + 2L+H)(1 + 3L+H)

1 + 3H + 6L
(3H + 6L)π∗c(B),

so

ϕ∗c(Y ) = π∗

(
(1 +H)(1 + 2L+H)(1 + 3L+H)

1 + 3H + 6L
(3H + 6L)

)
c(B)

by the projection formula. Thus computing ϕ∗c(Y ) amounts to computing

π∗

(
(1 +H)(1 + 2L+H)(1 + 3L+H)

1 + 3H + 6L
(3H + 6L)

)
,

which is where Theorem 1.1 comes into play. Let C = (1+H)(1+2L+H)(1+3L+H)
1+3H+6L (3H + 6L) ∈

A∗P(O ⊕L 2 ⊕L 3). Now
1

c(E )
=

1
(1 + 2L)(1 + 3L)

= −2 · 1
1 + 2L

+ 3 · 1
1 + 3L

,

and C expanded as a series in H is

C = β0 + β1H + β2H
2 + · · · ,

where the βi’s are rational expressions in L, giving us our polynomial fC (He = 0 for
e > dim(B)+2). So in the notation of Theorem 1.1, N = 1 so there is only one fCj , namely
fC1 , thus we can take

fC1(H) = β2 + β3H + · · ·+ β2+dim(B)H
dim(B) =

C − (β0 + β1H)
H2

.

Therefore, by Theorem 1.1

π∗(C) = −2 · fc1(−2L) + 3 · fc1(−3L)

= −2 · C − (β0 + β1(−2L))
(−2L)2

+ 3 · C − (β0 + β1(−3L))
(−3L)2

= 2 · 6L
1 + 6L

,
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and since g is a section of L 6,

c(Z) =
6L

1 + 6L
c(B),

thus the theorem is proved. Corollary 3.2 is obtained by plugging in c1(B) for L, then
taking the degree of its zero dimensional component. �

Note that in this case the formula from Theorem 1.1 involved only two summands. We
would also like to point out that in the proof above instead of using the polynomial fC1 ,
we use the equivalent rational expression C−(β0+β1H)

H2 (where the rational expression for C
is used), in hopes that the final result will look like a Chern class as well. This is precisely
what happens in all three cases of Theorem 2.1.4 Had we used the polynomial expression
for fC1 , π∗(C)’s identity as a Chern class of a divisor in the base would have been obscured
by its polynomial form. Of course the result of Corollary 3.2 is but only one of the Chern
numbers of Y , the rest of which are just as easily obtained by application of Theorem 1.1
(actually, due to the fact that Y is Calabi-Yau, the only other non-zero Chern number is∫
c2(Y )2 =

∫
24c1(B)c2(B) + 120c1(B)3).

2.2. Plane curve fibrations of arbitrarily large genus. After proving Theorem 2.1
using Theorem 1.1, we notice there was nothing special about the fact that the generic
fiber of Y was a degree 3 plane curve of genus 1. As such, we fully exploit the utility
of Theorem 1.1 and upgrade Theorem 2.1 to a statement about plane curve fibrations of
arbitrarily large genus, which we now consider.

Again, let B be a non-singular compact complex algebraic variety endowed with a line
bundle L , and let E = O⊕L a⊕L b, for some a, b ∈ Z. We consider a hypersurface Y~w in
P(E ) of class [Y~w] = dH + eL for some d ∈ N, e ∈ Z, where L = c1(L ), H = c1(OP(E )(1)),
and ~w = (a, b, d, e) is the vector of parameters on which our variety depends. Such a
hypersurface determines a fibration Y~w → B whose generic fiber is a plane curve of genus
g = (d−1)(d−2)

2 . We show that these fibrations are almost never Calabi-Yau, along with an
extension of Theorem 2.1.

Proposition 2.4. Let ϕ : Y~w → B be a plane curve fibration as defined above. Then Y~w
cannot be Calabi-Yau for d 6= 3. For d = 3, Y~w is Calabi-Yau if and only if

c1(B) = (e− a− b) · c1(L ).

Proof. A standard calculation yields

KY~w
= π∗((e− a− b) · L− c1(B)) + (3− d) · c1(OP(E )(1)).

Thus Y~w is Calabi-Yau if and only if

(†) π∗((e− a− b) · L− c1(B)) = (d− 3) · c1(OP(E )(1))

But intersecting both sides of this equation with the class F of a generic fiber yields

0 = (3− d) · d[pt],

which is obviously false for d 6= 3. For d = 3, the RHS of (†) is 0 so the proposition is
proved. �

We now upgrade Theorem 2.1, as promised.

4For the E7 case, we embed Y as a complete intersection in an unweighted P3 bundle over B, and then
apply Theorem 1.1
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Theorem 2.5. Let ϕ : Y~w → B be a plane curve fibration as defined above, and let F =
L e ⊕L e−ad ⊕L e−bd. Then

ϕ∗c(Y~w) = X · s(F ) · c(B),

where X = ((3e3 − 3bde2 − 3ade2 + 3abd2e) ·L3 + (6e2 − 4bde− 4ade+ 2abd2) ·L2 + (3de+
3e− ad− ad2 − bd2 − bd) · L+ (3d− d2)) ∈ A∗B, and s(F ) = c(F )−1 is the Segre class of
F .

The proof is exactly the same as the proof given above for the E8 case of Theorem 2.1,
and is omitted. We stress the fact that the formula of Theorem 1.1 is essential in the proof
of this result, as it allows us to generate the class X and the vector bundle F as a function
of the parameters ~w. The E6 and E8 cases of Theorem 2.1 are just the (1, 1, 3, 3) and
(2, 3, 3, 6) cases of this result respectively. It is natural to ask wether or not there exist
other ~ws for which ϕ∗c(Y~w) is supported on a Chern class of a divisor in the base other
than (1, 1, 3, 3) and (2, 3, 3, 6). To give a partial answer, we multiply X · s(F ) by 1 + fL for
f ∈ Z, expand the result as a series in L, then set the first few coefficients of Li for i 6= 1
equal to zero. Our solutions are then candidates for possible ~ws. It turns out our solutions
all lead to ϕ∗c(Y~w)s of the desired form. We list the results.

~w (f2 ,
f
4 , 3, f) (f2 ,

f
3 , 3, f) (f3 ,

f
3 , 3, f) (−f2 ,

−f
4 , 3,

−f
2 ) (−f2 ,

−f
6 , 3,

−f
2 )

ϕ∗c(Y~w) 3fL
1+fLc(B) 2fL

1+fLc(B) 4fL
1+fLc(B) 3fL

1+fLc(B) 2fL
1+fLc(B)

2.3. A K3/elliptically fibered Calabi-Yau fourfold. We conclude this section with a
pretty example inspired by F-theory/heterotic dualities. We construct a class of Calabi-
Yau fourfolds Y which are both elliptically fibered as well as K3 fibered, and compute
their arithmetic genera using only adjunction and Theorem 1.1. Our starting point is a K3
surface, realized as an E8 elliptic fibration as defined above with B = P1:

K3 //

��

P(O ⊕O(4)⊕O(6))

vvnnnnnnnnnnnnnn

P1

Recall that an E8 elliptic fibration is Calabi-Yau if and only if c1(L ) = c1(B), determining
the choice L = OP1(2). Next, we take a P1-bundle S = P(O ⊕O(n))→ P2, and construct
an E8 elliptic fibration Y → S over this threefold in such a way that the restriction of our
fibration to each of the P1 fibers of S is our K3 constructed above. The resulting fibration
Y will be elliptically fibered over S as well as K3 fibered over P2. To accomplish this, we
need a line bundle M on S such that we have the following commutative diagram for any
fiber P1 of S:

K3 //

))SSSSSSSSSSSSSSSSSSSS P(O ⊕O(4)⊕O(6)) = P(i∗E ) //

��

P(E ) = P(O ⊕M 2 ⊕M 3)

π2

��

Yoo

vvmmmmmmmmmmmmmmmm

P1 i // S = P(O ⊕O(n))

π1

��
P2

And for Y to be Calabi-Yau, we also need c1(M ) = c1(S) = 2K + π∗1c1(O(n)) + π∗1c1(P2),
where K = c1(OP(F )(1)) and F = O ⊕O(n). These two conditions on M are achieved by
taking M = π∗1OP2(3)⊗OS(2)⊗π∗1OP2(n) (the former condition is satisfied due to the fact



ON GENERALIZED SETHI-VAFA-WITTEN FORMULAS 7

that pullback bundles don’t affect the geometry of P(E ) as we move along the individual
P1 fibers in the base S, so that P(i∗E ) = P(O⊕O(4)⊕O(6))). Repeating this construction
with an E6 or E7 K3 surface as our starting point yields two more classes of examples. To
compute their arithmetic genera, we first compute their Chern numbers via Theorem 1.1.
For example in the E6 case, we have that

c(Y ) =
(1 +H)(1 +H +M)2(3H + 3M)π∗2c(S)

1 + 3H + 3M
∈ A∗P(E ),

where M = c1(M ), and H = c1(OP(E )(1)). Expanding this expression as a series in H
immediately yields

c22 = α0 + α1H + · · ·+ α5H
5 ∈ A5P(E ),

c4 = β0 + β1H + · · ·+ β5H
5 ∈ A5P(E ),

where the αis and βjs are polynomial expressions in M and the Chern classes of S. Using
the fact that in the E6 case 1

c(E ) = 1
(1+M)2

, we first pushforward these zero-cycles to S using
Theorem 1.1:

π2∗(c22) =
d

dH

(
c22 − (α0 + α1H)

H

)
|H=−M

= 24c1(S)c2(S) + 24c1(S)3

= a0 + a1K + a2K
2 + a3K

3,

π2∗(c4) =
d

dH

(
c4 − (β0 + β1H)

H

)
|H=−M

= 12c1(S)c2(S) + 72c1(S)3

= b0 + b1K + b2K
2 + b3K

3,

where the ais and bjs are polynomials in h = c1(OP2(1)) of degrees 3−i and 3−j respectively.
The final two equalities for each expression come from the fact that

M = c1(S) = (n+ 3)h+ 2K, c2(S) = 3(n+ 1)h2 + (n+ 6)h ·K +K2.

Then using the fact that 1
c(F ) = 1

(1+nh) , we apply Theorem 1.1 once again to get that

π1∗(π2∗(c22)) =
(
π2∗(c22)− a0

K

)
|K=−nh

= (1872 + 48n2)h2,

π1∗(π2∗(c4)) =
(
π2∗(c4)− b0

K

)
|K=−nh

= (4176 + 144n2)h2.

And since
∫
π∗(C) =

∫
C for any proper pushforward π∗, we get that∫

P(E )
c2(Y )2 = 1872 + 48n2,

∫
P(E )

c4(Y ) = 4176 + 144n2.



8 JAMES FULLWOOD

Repeating this process for the E7 and E8 cases yields the following non-zero Chern numbers
for all fibrations considered in this example:

Chern numbers E6 E7 E8∫
c2(Y )2 1872 + 48n2 3168 + 96n2 7056 + 240n2∫
c4(Y ) = χ(Y ) 4176 + 144n2 8064 + 288n2 19728 + 720n2

With Chern numbers in hand and using the fact that H0,p(Y,Ωq) = Hq,p(Y ), we imme-

diately compute the arithmetic genera χq :=
4∑
p=0

(−1)phq,p(Y ) =
∫

P(E )
ch(Ωq)Td(Y ):

arithmetic genera E6 E7 E8

χ0 = 1
720

∫
3c22 − c4 2 2 2

χ1 = 1
180

∫
3c22 − 31c4 −688− 24n2 −1336− 48n2 −3280− 120n2

χ2 = 1
120

∫
3c22 + 79c4 2796 + 96n2 5388 + 192n2 13164 + 480n2

The fact that χ0 = 2 in all the cases above reflects the well known fact that for Calabi-
Yau fourfolds with full SU(4) holonomy we have that h0,0 = 1, h1,0 = h2,0 = h3,0 = 0,
and h4,0 = 1. We note that no intersection numbers were computed in this example, as
Theorem 1.1 reduced the computation of Chern numbers to reading off the coefficient of h2

in A∗P2.

3. On the Structure of A∗P(E )

We now take time to elaborate more on the structure of the Chow group A∗P(E ) for
a general projective bundle over an algebraic scheme, and discuss how the hypotheses of
Theorem 1.1 can be eased to apply to this more general setting.

Let B be an algebraic scheme over a field, E → B be a vector bundle of rank (n+1), and
P(E ) π→ B its associated projectivization. If B is singular, P(E ) might acquire singularities
as well, in which case intersection products of algebraic cycles are not well defined, denying
us a commutative ring structure on the Chow group A∗P(E ). However, the structure
theorem for the Chow group of a projective bundle tells us that we can still think of classes
in A∗P(E ) as polynomials in powers of c1(OP(E )(1)) with coefficients in A∗B none the less.
The precise statement is the following:

Theorem 3.1. ([3])With notation and assumptions as above, each element β ∈ AkP(E ) is
uniquely expressible in the form

β =
n∑
i=1

c1(OP(E )(1))i ∩ π∗αi,

for αi ∈ Ak−n+i(B).

In light of this fact, we know the map p : A∗B[ζ]→ A∗P(E ) given by

β0 + β1ζ + · · ·+ βrζ
r 7−→ π∗β0 + c1(OP(E )(1)) ∩ π∗β1 + · · ·+ c1(OP(E )(1))r ∩ π∗βr

is a surjective morphism of groups. If B (and so P(E )) is non-singular, we can lift this
statement to the level of Chow cohomology and deduce that any class C ∈ A∗P(E ) can be
written as

C = π∗β0 + π∗β1 · ζ + · · ·+ π∗βr · ζr,
where ζ=c1(OP(E )(1)) ∩ [P(E )]. Thus

π∗(C) = β1 · π∗(ζ) + · · ·+ βr · π∗(ζr)
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by the projection formula, and so π∗(C) is completely determined by the π∗(ζi), which is
absolutely essential for the proof of Theorem 1.1 (as we will see in section §4). Now if B is
singular, the projection formula doesn’t apply to a general class of the form

C = π∗β0 + c1(OP(E )(1)) ∩ π∗β1 + · · ·+ c1(OP(E )(1))r ∩ π∗βr
as given by the structure theorem. However, if the π∗βi = qi∩ [P(E )] in the expression given
above, where the qi = Qi(cj1(π∗E1), · · · , cjm(π∗Em)) are polynomials in Chern classes of
vector bundles on B, then we can write c1(OP(E )(1))i ∩ π∗βi as

qi · c1(OP(E )(1))i ∩ [P(E )] = qi ∩ ζi.

Now by the projection formula, π∗(qi ∩ ζi) = qi ∩ π∗(ζi), and so π∗(C) again only depends
on the π∗(ζi) as in the non-singular case, thus we can apply the formula of Theorem 1.1
to compute π∗(C). In summary, Theorem 1.1 applies to classes in the Chow group of a
projective bundle of the form stated above over any algebraic scheme B, long as C is written
in terms of polynomials of Chern classes of vector bundles on B operating on powers of the
hyperplane section in P(E ).

4. The Proof

We recall the assumptions made in §1. LetB be a non-singular compact complex algebraic
variety, L a line bundle on B, E → B be a vector bundle of the form E = L a1⊕· · ·⊕L an+1 ,
and let P(E ) π→ B be its associated projectivization. We prove Theorem 1.1 in the case
that only one non-zero power of L appears in E , i.e., c(E ) = (1 + aL)k for some a ∈ Z,
where L = c1(L ). Once this case is established the general case will immediately follow.

Proof. Let C ∈ A∗P(E ), and let fC = β0 + · · ·+ βsζ
s be any polynomial which maps to C

under the natural projection p : A∗B[ζ] → A∗P(E ), i.e., fC is a polynomial representation
of C in terms of powers of ζ = OP(E )(1) . Since π∗(π∗βi ·ζi) = βi ·π∗(ζi), π∗(C) is completely
determined by the π∗(ζi). To evaluate π∗(ζi), we use the Segre class s(E ) of E , which is
the multiplicative inverse of c(E ) in A∗P(E ). By definition,

s(E ) = π∗(1 + ζ + ζ2 + · · · ),
and since s(E ) = 1

c(E ) ,

π∗(1 + ζ + ζ2 + · · · ) =
1

(1 + aL)k

=
1

(k − 1)!
· d

k−1

dxk−1

(
1

1− x

)
|x=−aL

= (1 + α1x+ α2x
2 + · · · )|x=−aL.

Matching terms of like dimension, we see that

1 7→ 0, ζ 7→ 0, · · · , ζn−1 7→ 0, ζn 7→ 1, ζn+1 7→ α1(−aL), ζn+2 7→ α2(−aL)2, · · ·
So to obtain π∗(C), we must take fC = β0 + · · ·+ βsζ

s and substitute the ζi’s according
to the rules above. To accomplish this, we introduce the polynomial

fCk
=

1
ζn−k+1

· (fC − (β0 + · · ·+ βn−1ζ
n−1))

= βnζ
k−1 + · · ·+ βsζ

s−(n−k+1).



10 JAMES FULLWOOD

Thus,
1

(k − 1)!
· d

k−1

dζk−1
(fCk

) = βn + βn+1 · (α1ζ) + · · ·+ βs · (αlζ l),

where l = s − n. The crux of the proof is that evaluating this expression at ζ = −aL
performs all the desired substitutions in one fell swoop, i.e.,

π∗(C) =
1

(k − 1)!
· d

k−1

dζk−1
(fCk

)|ζ=−aL,

which is precisely the statement of Theorem 1.1 in our case. For the general case where
c(E ) = (1 + d1L)k1 · · · (1 + dmL)km , just take the partial fraction decomposition of 1

c(E ) and
reduce the computation to a linear combination of cases as above. �

5. Further Directions

Exercising one’s (perhaps) natural penchant for generalization, there are obvious direc-
tions in which the scope of Theorem 1.1 could be furthered. Products of projective bundles
each of which are of the form assumed throughout this note would be a natural starting
place for one. It would also be nice to have such a formula for weighted projective bundles.
In [1], al Amrani generalizes the relation we have in the Chow cohomology of P(E ) coming
from the unique monic generator of the kernel of the map p : A∗B[ζ]→ A∗P(E ), namely

(††) ζn + c1(E )ζn−1 + · · ·+ cn(E ) = 0

where n = rk(E ) and ζ = c1(OP(E )(1)), to an identical relation in the topological cohomol-
ogy ring of a weighted projective bundle P~w(E ), which is obtained from (††) by replacing
each ci(E ) by his ”twisted” Chern classes relative to the weights ~w of the projectivization
(he defines an analogous tautological bundle as well). In the proof of Theorem 1.1, we used
the Segre class s(E ) to determine the pushforwards of the π∗(ζi). Alternatively, we could
have used (††) to determine the π∗(ζi), so al Amrani’s generalization of (††) could perhaps
be used to determine pushforwards of powers of hyperplane sections in A∗P~w(E ) as well.
Going even further, we speculate that a generalization at the level of toric bundles lurks in
the shadows.
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