
APPLICATION OF A FOURIER RESTRICTION THEOREM

TO CERTAIN FAMILIES OF PROJECTIONS IN R3

DANIEL OBERLIN AND RICHARD OBERLIN

Abstract. We use a restriction theorem for Fourier transforms of frac-
tal measures to study projections onto families of planes in R3 whose
normal directions form nondegenerate curves.

1. Introduction and statement of results

Suppose that γ : [0, 1]→ S2 is C(2). Following K. Fässler and T. Orponen
[4] we say that γ is nondegenerate if

span {γ(t), γ′(t), γ′′(t)} = R3, t ∈ [0, 1].

Let πt be the orthogonal projection of R3 onto the plane γ(t)⊥ and let
B ⊂ R3 be a compact set with Hausdorff dimension dim(B) = α. One of
the problems treated in [4] is to say something about the dimension of πt(B)
for generic t ∈ [0, 1]. Fässler and Orponen prove that

(a) if α ≤ 1 then

dim(πt(B)) = dim(B)

for almost all t ∈ [0, 1], and
(b) if α > 1 then there exists σ = σ(α) > 1 such that the packing
dimension of πt(B) exceeds σ for almost all t.

In a subsequent paper, [6], Orponen considers the particular γ given by

(1.1) γ(t) =
1√
2

(cos t, sin t, 1)

and establishes the analog of (b) for Hausdorff dimension. (We mention
that, in addition to other interesting results of a similar nature, the papers
[4] and [6] provide a nice account of the history of these problems.) The
purpose of this note is to prove the following result:
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Theorem 1.1. With notation as above, suppose that B is a compact subset
of R3 and that dim(B) = α ≥ 1. Then, for almost all t ∈ [0, 1],

(1.2) dim
(
πt(B)

)
≥ 3α/4 if 1 ≤ α ≤ 2 and

dim
(
πt(B)

)
≥ α− 1/2 if 2 ≤ α ≤ 3.

The proof uses the potential-theoretic method introduced in [5], which we
approach using the Fourier transform as in [3]. In the model case (1.1) a
critical role in the proof of Theorem 1.1 is played by the following result of
Erdoğan, which can be extracted from [1]:

Theorem 1.2. Suppose that µ is a nonnegative and compactly supported
Borel probability measure on R3 satisfying

(1.3) µ
(
B(x, r)

)
≤ c rα

for x ∈ R3 and r > 0. If α′ < α then there is C (depending only on c, α′,
and the diameter of the support of µ) such that∫ 2π

0

∫ 1

1/2
|µ̂
(
Rρ (cos t, sin t, 1)

)
|2dρ dt ≤ C R−β(α′), R ≥ 1,

where β(α′) = α′/2 if 1 ≤ α ≤ 2 and β(α′) = α′ − 1 if 2 ≤ α ≤ 3.

To prove Theorem 1.1 we require the following generalization of Theorem
1.2:

Theorem 1.3. Suppose φ : [−1/2, 1/2]→ R is C(2) and satisfies

M/2 ≤ |φ′(t)| ≤M, |φ′′(t)| ≥ m > 0

for t ∈ [0, 1] and for positive constants M and m. Suppose that µ is a non-
negative and compactly supported Borel probability measure on R3 satisfying

µ
(
B(x, r)

)
≤ c rα

for x ∈ R3 and r > 0. If α′ < α then there is C (depending only on
m,M, c, α′, and the diameter of the support of µ) such that

(1.4)

∫ 1/2

−1/2

∫ 1

1/2
|µ̂
(
Rρ (t, φ(t), 1)

)
|2dρ dt ≤ C R−β(α′), R > 1,

where β(α′) = α′/2 if 1 ≤ α ≤ 2 and β(α′) = α′ − 1 if 2 ≤ α ≤ 3.

(For a similar generalization of Wolff’s result in [7] on decay of circular
means of Fourier transforms of measures on R2, see [2].)

This note is organized as follows: §2 contains the proof of Theorem 1.1, §3
contains the proof of Theorem 1.3, and §4 contains the proof of a technical
lemma used in §3.
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2. Proof of Theorem 1.1

Suppose α′ < α̃ < α so that we can find a probability measure µ on B
satisfying

(2.1) µ
(
B(x, r)

)
≤ C rα̃, x ∈ R3, r > 0 and∫

R3

|µ̂(ξ)|2

|ξ|3−α̃
dξ <∞.

Write πt(µ) for the measure which is the push-forward of µ onto πt(R3)
under the projection πt. For a function f on γ(t)⊥ we have∫

γ(t)⊥
f dπt(µ) =

∫
R3

f
(
x− [x · γ(t)]γ(t)

)
dµ(x)

so for ξ ∈ γ(t)⊥ we have

π̂t(µ)(ξ) =

∫
R3

e−2πi〈ξ,(x−[x·γ(t)]γ(t)〉 dµ(x) = µ̂(ξ).

To establish (1.2) it is therefore enough to show that for each t0 ∈ (0, 1)
there is some closed interval I = It0 containing t0 in its interior such that

(2.2)

∫
I

∫
γ(t)⊥

|µ̂(ξ)|2

|ξ|2−τ(α′)
dξ dt <∞,

where

(2.3) τ(α′) = 3α′/4 if 1 ≤ α ≤ 2, τ(α′) = α′ − 1/2 if 2 < α ≤ 3.

Without loss of generality we assume that γ is parametrized by arclength.
Let u(t) = γ′(t), v(t) = γ(t)× γ′(t). We parametrize γ(t)⊥ by

(u, v) 7→ u · u(t) + v · v(t)

and part of R3 by

(2.4) (t, u, v) 7→ u · u(t) + v · v(t).

If we now parametrize (u, v)-space by polar coordinates

u = r sin θ, v = r cos θ

then (2.2) becomes

(2.5)

∫ 2π

0

∫
I

∫ ∞
0

|µ̂
(
r(sin θ u(t) + cos θ v(t) )

)
|2

r1−τ(α′)
dr dt dθ <∞.

To establish (2.5) for every α′ < ᾱ it is enough to show that
(2.6)∫ 2π

0

∫
I

∫ 2R

R

|µ̂
(
r(sin θ u(t) + cos θ v(t) )

)
|2

r1−τ(α′)
dr dt dθ ≤ C(I, α′), R ≥ R(I) > 1

for every α′ < ᾱ. We will focus, without loss of generality, on the part of
the integral in (2.6) corresponding to the range 0 ≤ θ ≤ π/2. We write

(2.7) η(R) = R−α
′/4 if 1 ≤ α ≤ 2, η(R) = R−1/2 if 2 < α ≤ 3
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and then split the integral:

(2.8)

∫ η(R)

0

∫
I

∫ 2R

R

|µ̂
(
r(sin θ u(t) + cos θ v(t) )

)
|2

r1−τ(α′)
dr dt dθ+∫ π/2

η(R)

∫
I

∫ 2R

R

|µ̂
(
r(sin θ u(t) + cos θ v(t) )

)
|2

r1−τ(α′)
dr dt dθ

.
=

I1 + I2.

We begin with the second of these and will use the change of variable
(2.4). The Jacobian factor J = J(t, u, v) associated with (2.4) is

|det
(
u(t), v(t), u · u′(t) + v · v′(t)

)
| = |〈u · u′(t) + v · v′(t), γ(t)〉|,

where the last equality follows because u(t)×v(t) = ±γ(t). Since u(t) ⊥ γ(t)
implies

〈u′(t), γ(t)〉 = −〈u(t), γ′(t)〉
and similarly for v(t), we see that

(2.9) J = |u|.

To use (2.9) we need some information about the multiplicity of the change of
variables (2.4). To obtain this information we will impose a first restriction
on the size of the interval I = It0 . (When we deal with with the second
integral in (2.8) we will need to impose further restrictions on I.) Fix t0
and choose coordinates for R3 so that γ(t0) = (0, 0, 1) and γ′(t0) = (1, 0, 0)
and then write γ = (γ1, γ2, γ3). Let γ̄(t) be the curve in R2 given, in a
neighborhood of t0, by

(2.10) γ̄(t) =
(γ1(t)

γ3(t)
,
γ2(t)

γ3(t)

)
and let γ̃ be the curve in R3 given by

(2.11) γ̃(t) = γ(t)/γ3(t) =
(
γ̄(t); 1

)
.

We will need that fact that if κ(γ̄; t) is the curvature of γ̄ at t0 then

κ(γ̄; t0) = |det
(
γ(t0), γ′(t0), γ′′(t0)

)
| > 0,

where the inequality is a consequence of the non degeneracy of γ. To see
the equality we begin by computing

γ̄′ =
(γ′1γ3 − γ1γ

′
3

γ2
3

,
γ′2γ3 − γ2γ

′
3

γ2
3

)
and

γ̄′′ =
(γ2

3(γ′′1γ3 − γ1γ
′′
3 )− 2γ3γ

′
3(γ′1γ3 − γ1γ

′
3)

γ4
3

,
γ2

3(γ′′2γ3 − γ2γ
′′
3 )− 2γ3γ

′
3(γ′2γ3 − γ2γ

′
3)

γ4
3

)
.

When t = t0 we have

γ̄(t0) = (1, 0), γ̄′′(t0) =
(
γ′′1 (t0), γ′′2 (t0)

)
.
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Thus κ(γ̄; t0) = |γ′′2 (t0)| = | det
(
γ(t0), γ′(t0), γ′′(t0)

)
| as desired. Now choose

I small enough so that

κ(γ̄; t) > 0, t ∈ I.
After possibly shrinking I again one sees that if t1, t2, t3 ∈ I, then the vectors
{γ̃(t1), γ̃(t2), γ̃(t3)} are linearly independent. Since

γ̃(ti) ⊥
(
u · u(ti) + v · v(ti)

)
,

it follows that (2.4) is at most three-to-one on I × (R2 ∼ {0}). Therefore,
with

ξ = r
(

sin θ u(t) + cos θ v(t)
)

and using (2.9) to write J = |u| = |r sin θ| we have

(2.12) I2 =

∫ π/2

η(R)

∫
I

∫ 2R

R

|µ̂
(
r(sin θ u(t) + cos θ v(t) )

)
|2

r1−τ(α′)
dr dt dθ .

1

η(R)

∫
R≤|ξ|≤2R

|µ̂(ξ)|2

|ξ|3−τ(α′)
dξ ≤ C Rα′−ᾱ

by (2.1), (2.3), and (2.7).
We now obtain a similar estimate for the term I1. Lemma 3.2 from [4]

states that the function v(t) = γ(t)× γ′(t) satisfies the same hypotheses as
γ(t):

span{v(t), v′(t), v′′(t)} = R3, t ∈ [0, 1].

We proceed as above, beginning by choosing coordinates for R3 so that
v(t0) = (0, 0, 1), v′(t0) = (1, 0, 0). It follows that if v̄ and ṽ are defined as in
(2.10) and (2.11) but with v(t) in place of γ(t), then κ(v̄; t0) > 0. For small
θ we will also need the perturbations of v̄ and ṽ given by taking

(2.13) vθ(t) = cos θ v(t) + sin θ u(t)

instead of γ in (2.10) and (2.11). Using κ(v̄; t0) > 0 we choose θ0 > 0 such
that κ(v̄θ; t0) > 0 for 0 ≤ θ ≤ θ0. We then further restrict θ0 and the interval
I = It0 so that

(2.14) |vθ(t)− (0, 0, 1)| ≤ 1/10 for t ∈ I, 0 ≤ θ ≤ θ0

and, for some m̃ > 0, we have

κ(v̄θ; t) ≥ m̃ for 0 ≤ θ ≤ θ0, t ∈ I.

After a suitable linear change of coordinates in R2 we choose positive num-
bers M and m such that (after possibly diminishing θ0 and I) the curves
{ṽθ(t) : t ∈ I}, 0 ≤ θ ≤ θ0, can be written as

{
(
t̃, φθ(t̃), 1

)
: t̃ ∈ [−1/2, 1/2]}

with

M/2 ≤ |φ′θ(t̃)| ≤M, |φ′′θ(t̃)| ≥ m > 0, −1/2 ≤ t̃ ≤ 1/2, 0 ≤ θ ≤ θ0.
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It follows from Theorem 1.3 that for 0 ≤ θ ≤ θ0 we have∫
I

∫ 22R/10

9R/10
|µ̂
(
r(ṽθ(t) )

)
|2 dr dt ≤ C R1−β(α′).

So if R(I) is chosen to have η
(
R(I)

)
= θ0 then it follows from (2.3), (2.7),

(2.13), (2.14), and the definition of β(α′) that

I1 =

∫ η(R)

0

∫
I

∫ 2R

R

|µ̂
(
r(sin θ u(t) + cos θ v(t)

)
|2

r1−τ(α′)
dr dt dθ ≤ C(I, α′), R ≥ R(I).

With (2.12) and (2.8) this gives (2.6) and therefore completes the proof of
Theorem 1.1.

3. Proof of Theorem 1.3

For 2 < α ≤ 3, (1.4) follows directly from Theorem 1 in [1]. For 1 ≤ α ≤ 2,
the proof is an adaptation of ideas from [1] and [7]. Specifically, we will write

σ(ρ, t) = ρ
(
t, φ(t), 1

)
,

ΓR = {Rσ(t, ρ) : −1/2 ≤ t ≤ 1/2, 1/2 ≤ ρ ≤ 1},

ΓR,δ = ΓR +B(0, Rδ), R ≥ 2, δ > 0

and, with µ as in Theorem 1.3, we will show that (1.4) follows from the
estimate

(3.1)

∫
ΓR,δ

|µ̂(y)|2 dy . R2−α/2+2δ, 0 < δ ≤ 1.

We will then adapt a bilinear argument from [1] to prove (3.1). (Throughout
this proof the constants implied by the symbol . can be chosen to depend
only δ and on the parameters mentioned for C in the statement of Theorem
1.1.)

So, arguing as in [7], if κ ∈ C∞c (R3) is equal to 1 on the support of µ,
then

(3.2)∫ 1/2

−1/2

∫ 1

1/2
|µ̂
(
Rσ(ρ, t)

)
|2dρ dt =

∫ 1/2

−1/2

∫ 1

1/2

∣∣∣ ∫ κ̂
(
Rσ(ρ, t)−y

)
µ̂(y)dy

∣∣∣2dρ dt .∫ ∫ 1/2

−1/2

∫ 1

1/2

∣∣κ̂(Rσ(ρ, t)− y
)∣∣ dρ dt |µ̂(y)|2 dy.

Let ε = α − α′. Choose a large p1 such that if y /∈ ΓR + B(0, Rp1) then
dist(y,ΓR,ε/4) ≥ |y|/2. Choose a large p2 such that if y ∈ ΓR + B(0, Rp1)
then |y| ≤ Rp2 . Finally, choose a large K such that (K − 4)ε/4 ≥ 3p2. If
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y = (y1, y2, y3), then∫ 1/2

−1/2

∫ 1

1/2

∣∣κ̂(Rσ(ρ, t)−y)
∣∣ dρ dt . ∫ 1/2

−1/2

∫ 1

1/2

1(
1 + |Rσ(ρ, t)− y|

)K dρ dt .

1(
1 + dist(ΓR, y)

)K−4

∫ 1

1/2

∫ 1/2

−1/2

1(
1 + |Rρφ(t)− y2|

)2 dt 1(
1 + |Rρ− y3|

)2 dρ.
Estimating the last two integrals (we use the hypothesized lower bound on
φ′), we see from (3.2) that

(3.3)

∫ 1/2

−1/2

∫ 1

1/2
|µ̂
(
Rσ(ρ, t)

)
|2dρ dt . 1

R2

∫
|µ̂(y)|2(

1 + dist(ΓR, y)
)K−4

dy.

Now∫
|µ̂(y)|2(

1 + dist(ΓR, y)
)K−4

dy =

∫
ΓR,ε/4

+

∫
B(0,Rp2 )∼ΓR,ε/4

+

∫
{|y|≥Rp2}

.

The first integral, the principal term, is . R2−α′/2 by (3.1). Since y /∈ ΓR,ε/4
implies dist(ΓR, y) ≥ Rε/4, the second integral is . 1 by the fact that
(K − 4)ε/4 ≥ 3p2. Since |y| ≥ Rp2 implies y /∈ ΓR,p1 and so implies
dist(ΓR, y) ≥ |y|/2, the last integral is also . 1. Thus, given (3.1), (1.4)
follows from (3.3).

Turning to the proof of (3.1), we note that by duality (and the fact that
µ is finite) it is enough to suppose that f , satisfying ‖f‖2 = 1, is supported
on ΓR,δ and then to establish the estimate

(3.4)

∫
|f̂(y)|2 dµ(y) . R2−α/2+2δ.

The argument we will give differs from the proof of Theorem 5 in [1] only in
certain technical details. But, because those details are not always obvious,
we will give the complete proof.

For y ∈ R3, write y′ for a point Rσ(ρ′, t′) (ρ′ ∈ [1/2, 1], t′ ∈ [−1/2, 1/2])
on the surface ΓR which minimizes dist(y,ΓR). For a dyadic interval I ⊂
[−1/2, 1/2], define

ΓR,δ,I = {y ∈ ΓR,δ : t′ ∈ I}, fI = f · χΓR,δ,I .

For dyadic intervals I, J ⊂ [−1/2, 1/2], we write I ∼ J if I and J have the
same length and are not adjacent but have adjacent parent intervals. The
decomposition

(3.5) [−1/2, 1/2]× [−1/2, 1/2] =
⋃
n≥2

( ⋃
|I|=|J |=2−n

I∼J

(I × J)
)
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leads to

(3.6)

∫
|f̂(y)|2 dµ(y) ≤

∑
n≥2

∑
|I|=|J |=2−n

I∼J

∫
|f̂I(y)f̂J(y)| dµ(y).

Truncating (3.5) and (3.6) gives

(3.7)

∫
|f̂(y)|2 dµ(y) ≤∑

4≤2n≤R1/2

∑
|I|=|J |=2−n

I∼J

∫
|f̂I(y)f̂J(y)| dµ(y) +

∑
I∈I

∫
|f̂I(y)|2 dµ(y),

where I is a finitely overlapping set of dyadic intervals I with |I| ≈ R−1/2.
To estimate the integrals on the right hand side of (3.7), we begin with

two geometric observations. The first of these is that it follows from the
hypotheses on φ that if I ⊂ [−1/2, 1/2] is an interval with length `, then

ΓR,I
.
= {Rσ(ρ, t) : t ∈ I, 1/2 ≤ ρ ≤ 1}

is contained in a rectangle D with side lengths . R,R`,R`2, which we will
abbreviate by saying that D is an R× (R`)× (R`2) rectangle. Secondly, we

observe that if ` & R−1/2, then an Rδ neighborhood of an R× (R`)× (R`2)
rectangle is contained in an R1+δ × (R1+δ`)× (R1+δ`2) rectangle. It follows

that if I has length 2−n & R−1/2, then the support of fI is contained in a
rectangle D with dimensions R1+δ × (R1+δ2−n)× (R1+δ2−2n).

The next lemma is part of Lemma 4.1 in [1]. To state it, we introduce
some notation: φ is a nonnegative Schwartz function such that φ(x) = 1 for
x in the unit cube Q, φ(x) = 0 if x /∈ 2Q, and, for each M > 0,

|φ̂| ≤ CM
∞∑
j=1

2−Mjχ2jQ.

For a rectangle D ⊂ R3, φD will stand for φ◦b, where b is an affine mapping
which takes D onto Q. If D is a rectangle with dimensions a1 × a2 × a3,
then a dual rectangle of D is any rectangle with the same axis directions
and with dimensions a−1

1 × a
−1
2 × a

−1
3 .

Lemma 3.1. Suppose 1 ≤ α ≤ 2 and that µ is a non-negative Borel measure
on R3 satisfying (1.3). Suppose D is a rectangle with dimensions R1×R2×
R3, where R3 . R2 . R1 . R, and let Ddual be the dual of D centered at
the origin. Then, if µ̃(E) = µ(−E),

(3.8) (µ̃ ∗ |φ̂D|)(y) . R2−α
2 R1, y ∈ R3

and, if K & 1, y0 ∈ R3, then

(3.9)

∫
K·Ddual

(µ̃ ∗ |φ̂D|)(y0 + y) dy . KαR1−α
2 R−1

3 .
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Now if I ∈ I and suppfI ⊂ D as above, the identity f̂I = f̂I ∗ φ̂D implies
that

|f̂I | ≤ (|f̂I |2 ∗ |φ̂D|)1/2‖φ̂D‖1/21 . (|f̂I |2 ∗ |φ̂D|)1/2

and so

(3.10)

∫
|f̂I(y)|2 dµ(y) .

∫
(|f̂I |2 ∗ |φ̂D|)(y) dµ(y) =∫
|f̂I(y)|2(µ̃ ∗ |φ̂D|)(−y) dy . ‖fI‖22R2−α/2+2δ,

where the last inequality follows from (3.8), the fact that D has dimensions

R1+δ × R1/2+δ × Rδ since 2−n ≈ R−1/2, and the inequalities 1 ≤ α ≤ 2.
Thus the estimate

(3.11)
∑
I∈I

∫
|f̂I(y)|2 dµ(y) . R2−α/2+2δ

∑
I∈I
‖fI‖22 . R2−α/2+2δ

follows from ‖f‖2 = 1 and the finite overlap of the intervals I ∈ I (which
implies finite overlap for the supports of the fI , I ∈ I).

To bound the principal term of the right hand side of (3.7), fix n with

4 ≤ 2n ≤ R1/2 and a pair I, J of dyadic intervals with |I| = |J | = 2−n and
I ∼ J . Since I ∼ J , the support of fI ∗ fJ is contained in a rectangle D
with dimensions R1+δ × (R1+δ2−n) × (R1+δ2−2n). For later reference, let
u, v, w be unit vectors in the directions of the sides of D with u parallel to
the longest side and w parallel to the shortest side. As in (3.10),

(3.12)

∫
|f̂I(y)f̂J(y)| dµ(y) .

∫
(|f̂I f̂J | ∗ |φ̂D|)(y) dµ(y) =∫

|f̂I(y)f̂J(y)| (µ̃ ∗ |φ̂D|)(−y) dy.

Now tile R3 with rectangles P having exact dimensions (C2−2n)×(C2−n)×C
for some large C > 0 to be chosen later and having shortest side in the
direction of u and longest side in the direction of w. Let ψ be a fixed

nonnegative Schwartz function satisfying 1 ≤ ψ(y) ≤ 2 if y ∈ Q, ψ̂(x) = 0 if
x /∈ Q, and

(3.13) ψ ≤ CM
∞∑
j=1

2−Mjχ2jQ.

Since
∑

P ψ
3
P ≈ 1, it follows from (3.12) that if fI,P is defined by

f̂I,P = ψP · f̂I
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then

(3.14)

∫
|f̂I(y)f̂J(y)| dµ(y) .∑

P

(∫
|f̂I,P (y)f̂J,P (y)|2 dy

)1/2(∫ ∣∣(µ̃ ∗ |φ̂D|)(−y)ψP (y)
∣∣2 dy)1/2

.

To estimate the first integral in this sum, we begin by noting that the
support of fI,P is contained in supp(fI) + Pdual, where Pdual is a rectangle

dual to P and centered at the origin. Let Ĩ be the interval with the same

center as I but lengthened by 2−n/10 and let J̃ be defined similarly. Since

I ∼ J , it follows that dist(Ĩ , J̃) ≥ 2−n/2. Now the support of fI is contained
in ΓR,I +B(0, Rδ) and Pdual has dimensions (22nC−1)× (2nC−1)×C−1 and
side in the direction of v at an angle . 2−n to any of the tangents to the

curve
(
t, φ(t)

)
for t ∈ Ĩ (or t ∈ J̃). Recalling that 2n . R1/2, one can check

that, if C is large enough,

supp(fI,P ) ⊂ Γ
R,Ĩ

+B(0, CRδ)

and, similarly,

supp(fJ,P ) ⊂ Γ
R,J̃

+B(0, CRδ).

The next lemma follows from Lemma 4.2 in §4 by scaling:

Lemma 3.2. Suppose that the closed intervals Ĩ , J̃ ⊂ [0, 1] satisfy dist (Ĩ , J̃) ≥
c 2−n. Then, for δ > 0 and x ∈ R3, there is the following estimate for
the three-dimensional Lebesgue measure of the intersection of translates of
neighborhoods of ΓR,Ĩ and ΓR,J̃ :∣∣x+ ΓR,Ĩ +B(0, CRδ) ∩ ΓR,J̃ +B(0, CRδ)

∣∣ . R1+2δ2n.

It follows from Lemma 3.2 that for x ∈ R3 we have

(3.15)
∣∣x+ supp(fI,P ) ∩ supp(fJ,P )

∣∣ . R1+2δ2n.

Now ∫
|f̂I,P (y)f̂J,P (y)|2 dy =

∫
|f̃I,P ∗ fJ,P (x)|2 dx

and

|f̃I,P ∗ fJ,P (x)| ≤
∫
|fI,P (w − x) fJ,P (w)| dw ≤

|x+ supp(fI,P ) ∩ supp(fJ,P )|1/2
(
|f̃I,P |2 ∗ |fJ,P |2(x)

)1/2
.

Thus, by (3.15),

(3.16)(∫
|f̂I,P (y)f̂J,P (y)|2 dy

)1/2
. R1/2+δ2n/2

(∫
|f̃I,P |2 ∗ |fJ,P |2(x) dx

)1/2
=

R1/2+δ2n/2‖fI,P ‖2‖fJ,P ‖2.
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To estimate the second integral in the sum (3.14) we use (3.13) to observe
that

ψP .
∞∑
j=1

2−Mjχ2jP .

Thus ∫
(µ̃ ∗ |φ̂D|)(−y)ψP (y) dy .

∞∑
j=1

2−Mj

∫
2jP

(µ̃ ∗ |φ̂D|)(−y) dy.

Noting that 2jP ⊂ yP +KDdual for some K . R1+δ2−2n+j and some
yP ∈ R3, we apply (3.9) to obtain∫

(µ̃ ∗ |φ̂D|)(−y)ψP (y) dy .

∞∑
j=1

2−Mj(R1+δ2−2n+j)α(R1+δ2−n)1−α(R1+δ2−2n)−1 . 2−n(α−1).

Since
(µ̃ ∗ |φ̂D|)(−y) . (R1+δ2−n)2−αR1+δ

by (3.8) and since ψP (y) . 1, it follows that

(3.17)
(∫ (

(µ̃ ∗ |φ̂D|)(−y)ψP (y)
)2
dy
)1/2

. R(1+δ)(3−α)/2 2−n/2.

Now (3.16) and (3.17) imply, by (3.14), that∫
|f̂I(y)f̂J(y)| dµ(y) . R(1+δ)(2−α/2)

(∑
P

‖fI,P ‖22
)1/2(∑

P

‖fJ,P ‖22
)1/2

.

Since ∑
P

‖f̂I,P ‖22 =

∫
|f̂I(y)|2

∑
P

|ψP (y)|2 dy,

it follows from
∑

P ψ
2
P . 1 that∫

|f̂I(y)f̂J(y)| dµ(y) . R(1+δ)(2−α/2)‖fI‖2‖fJ‖2.

Thus

(3.18)
∑

|I|=|J |=2−n

I∼J

∫
|f̂I(y)f̂J(y)| dµ(y) .

R(1+δ)(2−α/2)
∑

|I|=|J |=2−n

I∼J

‖fI‖2‖fJ‖2 .

R(1+δ)(2−α/2)‖f‖22.

Now (3.4) follows from (3.7), (3.11), (3.18), and the fact that the first sum
in (3.7) has . logR terms. This completes the proof of Theorem 1.3.
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4. Two lemmas

As mentioned in §3, Lemma 3.2 follows from Lemma 4.2 below. The proof
of Lemma 4.2 will use the following fact:

Lemma 4.1. Suppose φ1, φ2 are functions on [c, d] with |φ′1(u1)−φ′2(u2)| ≥
a > 0 for all u1, u2 ∈ [c, d] and |φ′i| ≤ b. For δ′ > 0 let

Ci,δ′ = {
(
u, φi(u)

)
: u ∈ [c, d]}+B(0, δ′).

Then

(4.1) |C1,δ′ ∩ C2,δ′ | ≤ 16(1 + b)2δ′2/a.

Proof. To prove the lemma we begin by noting that we may the extend
the φi so that they are defined on [c − δ′, d + δ′] and satisfy the lemma’s
hypotheses on this larger interval. We may also assume that the intersection
in (4.1) is nonempty and then choose u0 ∈ [c, d] with

|φ1(u0)− φ2(u0)| < (2 + 2b)δ′.

Because of the assumptions on the φi it follows that

(4.2) if |u− u0| ≥ (4 + 4b)δ′/a then |φ2(u)− φ1(u)| ≥ (2 + 2b)δ′.

Now assume that (x1, x2) is in the intersection in (4.1) and so

|(x1, x2)− (ui, φi(ui))| < δ′, i = 1, 2

for some u1, u2 ∈ [c, d]. Then

(4.3) |x1 − ui|, |x2 − φi(ui)| < δ′, i = 1, 2.

Now

|x2 − φi(x1)| ≤ |x2 − φi(ui)|+ |φi(ui)− φi(x1)| < (1 + b)δ′

by (4.3) and |φ′i| ≤ b and so |φ1(x1)−φ2(x1)| < (2 + 2b)δ′. Thus (4.2) shows
that

(4.4) |x1 − u0| < (4 + 4b)δ′/a.

Since |x2−φ1(x1)| < (1+b)δ′, it follows from (4.4) (and the fact that (x1, x2)
is a generic point of the intersection in (4.1)) that (4.1) holds, proving the
lemma. �

Lemma 4.2. Suppose the real-valued function φ on [−1/2, 1/2] satisfies
estimates |φ(t)|, |φ′(t)| ≤ M , |φ′′(t)| ≥ m > 0 for −1/2 ≤ t ≤ 1/2. For
I ⊂ [−1/2, 1/2] and 0 < δ′ < 1 define

ΣI,δ′
.
= {ρ

(
t, φ(t), 1

)
: t ∈ I, 1/2 ≤ ρ ≤ 1}+B(0, δ′).

There is a positive constant C depending only on M and m such that if
I, J ⊂ [−1/2, 1/2] are `-separated subintervals of [0, 1] and x ∈ R3 then

(4.5)
∣∣(x+ ΣI,δ′) ∩ ΣJ,δ| ≤ Cδ′2/`.
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Proof. We can extend φ to [−20, 20] with estimates |φ(t)|, |φ′(t)| ≤ M ′,
|φ′′(t)| ≥ m′ > 0 for −3 ≤ t ≤ 3 and with M ′, m′ depending only on
M and m. Our strategy will be to estimate the two-dimensional Lebesgue
measure of certain sections of (x+ΣI,δ′)∩ΣJ,δ′ . Recall the notation σ(t, ρ) =

ρ
(
t, φ(t), 1

)
and assume that y, y′ ∈ (x+ΣI,δ′)∩ΣJ,δ′ . Then there are ρ, t, ρ̃, t̃

with t ∈ I, t̃ ∈ J such that

(4.6) |y − x− σ(t, ρ)|, |y − σ(t̃, ρ̃)| < δ′

and there are ρ′, t′, ρ̃′, t̃′ with t′ ∈ I, t̃′ ∈ J such that

(4.7) |y′ − x− σ(t′, ρ′)|, |y′ − σ(t̃′, ρ̃′)| < δ′.

Write x = (x1, x2, x3) and similarly for y and y′. We are interested in the
two-dimensional measure of the section defined by “third coordinate = c” -
in fact, (4.5) will follow when we show that the two-dimensional Lebesgue
measure of this section is ≤ Cδ′2/` - and so we assume that y3 = y′3 = c. It
follows from (4.6) and (4.7) that

|c− x3 − ρ|, |c− x3 − ρ′| < δ′

and thus that |ρ − ρ′| < 2δ′. Similarly, |ρ̃ − ρ̃′| < 2δ′. Thus there are fixed
ρ, ρ̃ such that if y′ ∈ (x+ ΣI,δ′)∩ΣJ,δ′ then there are t′ ∈ I, t̃′ ∈ J such that

(4.8) |y′ − x− σ(t′, ρ)|, |y′ − σ(t̃′, ρ̃)| < Cδ′.

where C denotes, as it always will in this proof, a positive constant depending
only on m and M . It follows from (4.8) that

(4.9) |(y′1, y′2)− (x1, x2)−
(
ρ t′, ρ φ(t′)

)
|, |(y′1, y′2)−

(
ρ̃ t̃′, ρ̃ φ(t̃′)

)
| < Cδ′.

Define

φ1(u) = x2 + ρ φ
(
(u− x1)/ρ

)
, φ2(u) = ρ̃ φ(u/ρ̃),

[c1, d1] = x1 + ρI, [c2, d2] = ρ̃J, [c, d] = [c1, d1] ∩ [c2, d2].

Then (4.9) implies that

(4.10) |(y′1, y′2)−
(
u1, φ1(u1)

)
|, |(y′1, y′2)−

(
u2, φ2(u2)

)
| < Cδ′

for some u1 ∈ [c1, d1], u2 ∈ [c2, d2].

Recall that our goal is to show that the set of all (y′1, y
′
2) for which (4.10)

holds has two-dimensional Lebesgue measure ≤ Cδ′2/`. In the case u1, u2 ∈
[c, d] this follows from Lemma 4.1 with a = m′`. (The derivative separation
requirement in Lemma 4.1 is a consequence of our hypothesis |φ′′| ≥ m′.)
Of the remaining cases, u1 ∈ [c1, d1], u2 /∈ [c1, d1] is typical: allowing C to
increase from line to line, |u1 − u2| < Cδ′ follows from (4.10). So, since
u1 ∈ [c1, d1], u2 /∈ [c1, d1], we have in succession that

dist
(
u2, {c1, d1}

)
≤ Cδ′, dist

(
y′1, {c1, d1}

)
≤ Cδ′,

and dist
(
y′2, {φ2(c1), φ2(d1)}

)
≤ Cδ′.
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(Note to the very careful reader: the extension of φ to the interval [−20, 20]
guarantees that both φ1 and φ2 are defined on an interval which contains
both [c1, d1] and [c2, d2].) Thus the set of all (y′1, y

′
2) for which (4.10) holds

with u1 ∈ [c1, d1], u2 /∈ [c1, d1] has two-dimensional Lebesgue measure ≤
Cδ′2. This completes the proof of Lemma 4.2.

�
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