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Abstract. We introduce multiscale covariance fields associated with
probability measures on Euclidean space and use them to define local
scales at a point and to construct shape transforms. Local scales at x
may be interpreted as scales at which key geometric features of data or-
ganization around x are revealed. Shape transforms are used to identify
points that are most salient in terms of the local-global geometry of a
probability distribution, yielding compact geometric summaries of the
distribution.
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1 Introduction

The problem of extracting image features from a multiscale analysis has received
a great deal of attention (cf. [3, 5, 6, 9]) as such features are useful in many image
analysis and processing tasks. Techniques such as scale invariant feature trans-
form (SIFT) employ a scale-space representation obtained by convolution with
the Gaussian kernel to identify salient local features in images [6]. As important
image features may be detected at different scales, a closely related problem is
that of identifying local scales at a point x, that is, scales at which critical in-
formation about the local characteristics of the image near x can be obtained.
The study of local scales of a shape, in contrast, still is incipient. In [8] there
appears a study of local scales on parametric curves; in [7], a single local scale
is defined for points in a shape, and [4] investigates local scales of submanifolds
of Euclidean space.

Shape data often are acquired as noisy samplings of objects, so it is natural
to treat these data as samples from probability distributions. In this paper, we
introduce a notion of local scales of (Borel) probability measures µ on Euclidean
space Rd, as well as shape transforms from which geometrically salient points
of a distribution can be identified. Local scales and shape transforms will be
derived from multiscale covariance fields associated with µ. Scale dependence
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will be controlled by a kernel function K(x, y, σ) > 0, where x, y ∈ Rd and
σ > 0 is the scale parameter. The idea is that, at scale σ, the kernel delimits
the horizon of an observer positioned at x by attributing weight K(x, y, σ) to
the point y. Covariation of the weighted data is measured relative to every point
x ∈ Rd, not just relative to the mean as is common practice, thus giving rise
to a multiscale covariance field. Localized empirical covariance has been used
in data analysis in ad hoc ways, but we develop a general framework for the
formulation and treatment of such problems. Global covariance fields have been
studied in [1]; however, for probability distributions on Euclidean space, they
provide no information other than that already contained in the usual covariance
tensor relative to the mean. Thus, a multiscale formulation is essential for gaining
additional insight on local and regional data geometry.

Curvature carries rich information about the local geometry of embeddings
of manifolds in Euclidean space. To offer evidence that multiscale covariance is
effective in capturing the geometry of data sets, we show that the curvature of
smooth curves in the plane and the principal curvatures of smooth surfaces in
R3 can be recovered from the small-scale covariance of singular measures in-
duced by the volume form; that is, arc length of curves and area of surfaces.
However, an advantage of the multiscale covariance approach is that these in-
finitesimal measures of geometric complexity easily extend to all scales and apply
to more general probability distributions and measures, not just those supported
on smooth objects.

The paper is organized as follows. In Section 2, we define multiscale covari-
ance fields. Section 3 shows that the curvature of planar curves and the principal
curvature of surfaces in R3 can be recovered from small-scale covariance calcu-
lated with respect to a particular kernel function. In Section 4, we use covariance
fields to define local scales and shape transforms that let us detect salient points
in shapes. We also provide several illustrations using synthetic data and data
obtained from the MPEG7 shape database.

2 Multiscale Covariance Fields

We begin with the definition of multiscale covariance fields associated with a
(Borel) probability measure µ on Euclidean space Rd, with scale controlled by
a kernel function K : Rd × Rd × (0,∞) → R+. In this paper, we focus on two
types of kernels: the isotropic Gaussian kernel

G(x, y, σ) =
1

(2πσ2)d/2
exp

(
−‖x− y‖

2

2σ2

)
, (1)

and the truncation kernel

T (x, y, σ) = χx,σ(y) , (2)

where χx,σ is the characteristic function of the ball of radius σ centered at x.
To define covariance fields, let us introduce some notation. Bilinear forms

Rd×Rd → R are identified with elements of the tensor product Rd⊗Rd. In this
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representation, a decomposable element v ⊗ w corresponds to the bilinear form
v ⊗ w (x, y) = 〈v, x〉 · 〈w, y〉, where 〈 , 〉 denotes Euclidean inner product. The
multiscale covariance field of µ, denoted Σ : Rd × (0,∞) → Rd ⊗ Rd, is defined
as

Σ(x, σ) =

∫
Rd

(y − x)⊗ (y − x)K(x, y, σ) dµ(y) , (3)

provided that the integral is convergent. Σ(x, σ) is a non-negative bilinear form
for any (x, σ). If y1, . . . , yn are i.i.d. Rd-valued random variables with distribution
µ, standard arguments show the consistency of the estimator

Σn(x, σ) =
1

n

n∑
i=1

(yi − x)⊗ (yi − x)K(x, yi, σ) . (4)

The normalized multiscale covariance field is defined as

Σ̂(x, σ) =
1

Z(x, σ)

∫
Rd

(y − x)⊗ (y − x)K(x, y, σ) dµ(y) , (5)

where Z(x, σ) =
∫
Rd K(x, y, σ)dµ(y), with the convention that Σ̂(x, σ) = 0 if

Z(x, σ) = 0. Similarly, the empirical normalized covariance is given by

Σ̂n(x, σ) =
1

Zn(x, σ)

n∑
i=1

(yi − x)⊗ (yi − x)K(x, yi, σ) , (6)

where Zn(x, σ) = 1
n

∑n
i=1K(x, yi, σ).

Remark. Note that, for the truncation kernel T , the (normalized) covariance
fields can be defined for any locally finite measure µ; that is, measures satisfyng
µ(K) <∞ for any compact set K ⊂ Rd.

3 Geometry of Curves and Surfaces

In this section, we show that much of the local geometry of planar curves and
surfaces in R3 can be recovered from covariance fields at small scales. The results
support our more empirical use of these fields in the detection of local scales and
in the construction of shape transforms.

3.1 Planar Curves

Let C ⊂ R2 be a smooth curve, that is, a 1-dimensional, smooth, properly em-
bedded submanifold of R2. We consider the singular measure µ on R2 supported
on C induced by arc length. This measure is locally finite because the embedding
is proper. We calculate the small-scale normalized covariance at points on C for
the truncation kernel and show that the curvature can be recovered from the
eigenvalues of Σ̂.

Let x0 ∈ C. The arc-length parametrization of C near x0 may be written as

X(s) = s− κ2s3

6 +O(s4) and Y (s) = κs2

2 + κss
3

6 +O(s4), where X(s) and Y (s)
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are coordinates along the tangent and normal to C at x0, respectively. Here, the
curvature κ and its derivatives κs, and κss are evaluated at x0. A calculation
shows that in these coordinates

Σ̂(x0, σ) =

σ2

3 −
7κ2σ4

180 +O(σ6) κsσ
4

30 +O(σ6)

κsσ
4

30 +O(σ6) κ2σ4

20 +O(σ6)

 . (7)

The eigenvalues are λ1 = σ2

3 −
7κ2σ4

180 +O(σ6) and λ2 = κ2σ4

20 +O(σ6). Thus, one
is able to recover curvature at x0 from small-scale covariance.

The case of a circle Let CR be a circle of radius R centered at the origin in R2.
If x0 is such that

∣∣‖x0‖−R∣∣ > σ then Σ̂(x0, σ) = 0. Assume that x0 6= (0, 0) and
σ > 0 are such that ‖x0‖ ∈ [R−σ,R+σ]. In this case, in the coordinate system
given by the directions n := x0/‖x0‖ and t := n⊥, a calculation shows that

Σ̃(x0, σ) is diagonal with entries fn(x0, σ) =
φ(R2+2‖x0‖2)+R(R cosφ−4‖x0‖) sinφ

2φ

and ft(x0, σ) = R2(φ−sinφ cosφ)
2φ , where φ = arccos

(
R2+‖x0‖2−σ2

2R‖x0‖

)
. In particular,

this means that fn is the eingenvalue corresponding to the eigenvector n along
the normal direction, and ft is the eigenvalue corresponding to the eigenvector
t along the tangent direction – see Fig. 1.

0.95 1.00 1.05 1.10

0.002

0.004

0.006

0.008

0.010

Fig. 1. Plot of the eigenvalues fn (in red) and ft (in blue) for R = 1 and σ = 0.1 as
a function of ‖x0‖ ∈ [0.9, 1.1]. For ‖x0‖ = 1, fn ' 5 × 10−6 and ft ' 0.033. Notice
that starting from ‖x0‖ = 1, as ‖x0‖ grows, the two eigenvalues first become equal and
then, as ‖x0‖ approaches 1.1, ft becomes dominant.

3.2 Surfaces in R3

Let S ⊂ R3 be a smooth compact surface. Consider the singular measure µ on R3

supported on S induced by the area measure on S. We calculate the small-scale
normalized covariance at points on S for the truncation kernel and show how its
principal curvatures can indeed be recovered from the spectrum of Σ̂.

Given a non-umbilic point x0 ∈ S, one can choose a Cartesian coordinate
system centered at x0 so that the x-axis is along the direction of maximal cur-
vature at x0, the y-axis is along the direction of minimal curvature at x0, and
the z-axis is along the normal at x0.
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Proposition 1. Let σ > 0 be small and x0 ∈ S be non-umbilic. Then, in the
coordinate system described above, Σ̂(x0, σ) is given by

σ2

4
− (3κ1+κ2)

2

384
σ4 +O(σ5) O(σ5) O(σ4)

O(σ5) σ2

4
− (κ1+3κ2)

2

384
σ4 +O(σ5) O(σ4)

O(σ4) O(σ4)
3κ2

1+2κ1κ2+3κ2
2

96
σ4 +O(σ5)

 ,

where κ1 and κ2 are the principal curvatures of S at x0.

It follows from this result that, for σ > 0 small, the determinant and trace
of Σ̂(x0, σ) equal

3κ21 + 2κ1κ2 + 3κ22
1536

σ8 +O(σ9) and
σ2

2
+

(κ1 − κ2)2

192
σ4 +O(σ5) ,

respectively. As a consequence, κ1 and κ2 can be recovered from the spectrum
of Σ̂(x0, σ) as a function of σ. Indeed, from the Taylor expansions of these two
functions one can extract the values of (κ1 − κ2)2 and 3κ21 + 2κ1κ2 + 3κ22 from
which one can determine the values of κ1 and κ2.

Proof (Proof of Proposition 1). By considering cylindrical coordinates in the
reference system that we have chosen, one can parametrize the patch S∩B(0, σ)
as (ρ cosφ, ρ sinφ, z(ρ, φ)) for ρ ∈ [0, ρσ(φ)], φ ∈ [0, 2π], where ρσ(φ) = σ −
1
8

(
κ1(cosφ)2+κ2(sinφ)2

)2
σ3+O(σ4) and z(ρ, φ) = ρ2

2

(
κ1(cosφ)2+κ2(sinφ)2

)
+

O(σ3). The area element on that surface patch is given by

dA =
(
ρ+

ρ3

2
(κ21(cosφ)2 + κ22(sinφ)2) +O(ρ5)

)
dρ dφ

so that the area of S∩B(0, σ) equals Z(0, σ) = πσ2+ π
32 (κ1−κ2)2σ4+O(σ5). Now

we have all the ingredients we need in order to compute Σ(0, σ). For example,
to calculate the (1, 1)-entry one computes

∫∫
S∩B(0,σ)

x2 dA as

∫ 2π

0

∫ ρσ(φ)

0

(
ρ3 cos2(φ) +

1

2
ρ5 cos2(φ)

(
κ22 sin2(φ) + κ21 cos2(φ)

)
+O

(
ρ6
) )
dρ dφ ,

which after a simple but tedious calculation yields the desired result. The com-
putation of other entries of the matrix follows the same steps.

4 Local Scales and Shape Transforms

Let µ be a (Borel) probability measure on Rd. In a logarithmic representation of
the scale parameter, the multiscale covariance field will be denoted Λ : Rd×R→
Rd ⊗ Rd, where Λ(x, r) = Σ(x, er).

We will use a simple measure of anisotropy to reduce the tensor field Λ to
a scalar field h. Let A(x,r) : Rd → Rd be the non-negative self-adjoint operator
associated with the 2-tensor Λ(x, r). The operator A(x,r) is characterized by
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Λ(x, r)(v, w) =
〈
v,A(x,r)(w)

〉
, for any v, w ∈ Rd. If λ1(x, r) > . . . > λd(x, r) > 0

are the eigenvalues of A(x,r), define the anisotropy function h : Rd × R→ R by

h(x, r) = 1− λd(x, r)

λ1(x, r)
. (8)

If λ1(x, r) = 0, we set h(x, r) = 0. The function h takes values in [0, 1], with 0
corresponding to fully isotropic covariance. Finer measures of anisotropy may be
used, for example, to account for the decay of the eigenvalues of A(x,r). However,
in this paper, we only consider h as defined in (8).

To describe some useful properties of anisotropy functions, we introduce the
following notation. For any function f defined on Rd × R, we let fx be the
function obtained by holding x fixed, so that fx(r) = f(x, r). Similarly, we
define fr(x) = f(x, r).

As a preliminary illustration, Figs. 2(a) and 2(b) show the normalized co-
variance fields (as fields of ellipses) – relative to the truncation and Gaussian
kernels, respectively – at a fixed scale for a data set comprising 1,000 points on
a circle sampled uniformly with respect to arc length. As expected, the field for
the truncation kernel is highly anisotropic near the circle with variation essen-
tially in directions tangential to the circle. Consistent with the calculations of
Section 3, as x moves away from the circle, Σr(x) first becomes more isotropic,
then becomes anisotropic again with high variation in the radial direction, finally
vanishing at points that are at a distance from the circle larger than the value
of the scale parameter. Fig. 2(c) shows the contour of an apple sampled at 872

(a) (b) (c) (d)

Fig. 2. Normalized covariance field at a fixed scale for a uniform sampling of the
circle calculated relative to the (a) truncation kernel and the (b) Gaussian kernel; (c)
a sampling of the contour of an apple with eight points highlighted; (d) map of the
anisotropy function hr of the apple with respect to the truncation kernel.

points and Fig. 2(d) displays the anisotropy function hr as an image. Fig. 3 shows
the function hx, calculated with respect to the Gaussian kernel, at the points on
the apple highlighted in Fig. 2(c). The geometry of the curve near points 5, 6, 7,
and 8 is simple and this is reflected in the fact that the small-scale covariance at
those points is highly anisotropic with variation taking place primarily along the
direction tangential to the curve. Only at larger scales those points “see” more
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interesting shape. In contrast, there are richer geometric features near points 1,
2, 3, and 4, leading to a more complex oscillatory behavior of hx.

(1) (2) (3) (4) (5) (6) (7) (8)

Fig. 3. Anistropy hx at the points on the contour of an apple highlighted in Fig. 2(c).

4.1 Local Scales

For a fixed x ∈ Rd, rapid growth or decay of the anisotropy function hx reveals
scales at which pronounced changes occur in the behavior of covariance tensors
centered at x. This suggests that values of r that correspond to local maxima and
minima of the derivative of hx represent geometrically important scales from the
viewpoint of x. These will be referred to as local scales at x. We order local scales
at x ∈ Rd in an increasing sequence that identify scales at which the complexity
of the geometry of a data set changes most significantly from the viewpoint of
an observer at x as the observational horizon expands. Fig. 4 shows an example
based on the truncation kernel T . Panel (a) highlights the balls of radius σ that
correspond to local scales detected at the tip of the stem of an apple and panel
(b) shows the full anisotropy function hx at that point highlighting local scales.

(a) (b)

Fig. 4. (a) Local scales at the tip of the stem of an apple calculated with respect to the
truncation kernel; (b) anisotropy function hx at that point with local scales highlighted.

4.2 Total Variation Transform

We use a reduction of the anisotropy function h to construct a shape transform
TVA : Rd → R, where TVA(x) is the total variation of hx over a fixed finite
interval. TVA(x) provides a summary of the complexity of the geometry of the
data distribution from the perspective of an observer positioned at x.

We calculated the total variation transform for a cyclically ordered sampling
of the contour curve of the objects in Fig. 5. Panel (a) shows a smoothed map of
the transform TVA restricted to the data points. The local maxima of TVA are
ordered according to decreasing values of TVA and panel (b) highlights the top
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ranked points. The other figures show a similar example. As expected, the TVA
transform is able to detect points with most salient local-global geometry.

Fig. 5. Maps of the TVA transform restricted to the contour of two objects and the
most salient local maxima.

5 Summary and Discussion

We introduced the notion of multiscale covariance field modulated by a kernel
function and employed it to identify local scales of data sets and probability
distributions on Euclidean space. For probability measures supported on smooth
data, we showed how curvature information can be recovered from small scale
covariance. We also constructed shape transforms from covariance tensor fields
that let us locate geometrically salient points in a probability measure. The
present work only deals with probability measures on Euclidean space, but we
will investigate extensions to a multiscale analysis of probability distributions
and data on more general spaces such as Riemannian manifolds. Future plans
also include study of other shape transforms derived from multiscale covariance
fields.
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